Research Theme: Neural Information Retrieval

Neural information retrieval refers to the applications of neural networks, specifically deep neural networks, for information retrieval tasks including ranking and query auto-completion. This research theme focuses on designing novel neural methods for IR and developing benchmarks for their evaluation.


Keynotes, invited talks, and lectures


What’s next for deep learning for Search?

Etsy
Virtual, November 2022
SlideShare | PPT



Shared task organization




Workshop organization




Tutorial organization




Publications


ReNeuIR at SIGIR 2024: The Third Workshop on Reaching Efficiency in Neural Information Retrieval

Maik Fröbe, Joel Mackenzie, Bhaskar Mitra, Franco Maria Nardini, and Martin Potthast
In proc. ACM SIGIR, 2024
Publication | PDF

Overview of the TREC 2023 Deep Learning Track

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Hossein A. Rahmani, Daniel Campos, Jimmy Lin, Ellen M. Voorhees, and Ian Soboroff
In proc. Text REtrieval Conference (TREC), 2024
Publication | PDF | ArXiv

Overview of the TREC 2022 Deep Learning Track

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, Jimmy Lin, Ellen M. Voorhees, and Ian Soboroff
In proc. Text REtrieval Conference (TREC), 2023
Publication | PDF | ArXiv

Are We There Yet? A Decision Framework for Replacing Term-Based Retrieval with Dense Retrieval Systems

Sebastian Hofstätter, Nick Craswell, Bhaskar Mitra, Hamed Zamani, and Allan Hanbury
Preprint, 2022
PDF | ArXiv

Fostering Coopetition While Plugging Leaks: The Design and Implementation of the MS MARCO Leaderboards

Jimmy Lin, Daniel Campos, Nick Craswell, Bhaskar Mitra, and Emine Yilmaz
In proc. ACM SIGIR, 2022
Publication | PDF

Inconsistent Ranking Assumptions in Medical Search and Their Downstream Consequences

Daniel Cohen, Kevin Du, Bhaskar Mitra, Laura Mercurio, Navid Rekabsaz, and Carsten Eickhoff
In proc. ACM SIGIR, 2022
Publication | PDF

Less is Less: When are Snippets Insufficient for Human vs Machine Relevance Estimation?

Gabriella Kazai, Bhaskar Mitra, Anlei Dong, Nick Craswell, and Linjun Yang
In proc. ECIR, 2022
Publication | PDF | ArXiv

Overview of the TREC 2021 Deep Learning Track

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Jimmy Lin
In proc. Text REtrieval Conference (TREC), 2022
Publication | PDF | ArXiv

MS MARCO Chameleons: Challenging the MS MARCO Leaderboard with Extremely Obstinate Queries

Negar Arabzadeh, Bhaskar Mitra, and Ebrahim Bagheri
In proc. ACM CIKM, 2021
Publication | PDF

Intra-Document Cascading: Learning to Select Passages for Neural Document Ranking

Sebastian Hofstätter, Bhaskar Mitra, Hamed Zamani, Nick Craswell, and Allan Hanbury
In proc. ACM SIGIR, 2021
Publication | PDF | ArXiv

Not All Relevance Scores are Equal: Efficient Uncertainty and Calibration Modeling for Deep Retrieval Models

Daniel Cohen, Bhaskar Mitra, Oleg Lesota, Navid Rekabsaz, and Carsten Eickhoff
In proc. ACM SIGIR, 2021
Publication | PDF | ArXiv

Improving Transformer-Kernel Ranking Model Using Conformer and Query Term Independence

Bhaskar Mitra, Sebastian Hofstätter, Hamed Zamani, and Nick Craswell
In proc. ACM SIGIR, 2021
Publication | PDF | ArXiv

MS MARCO: Benchmarking Ranking Models in the Large-Data Regime

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Jimmy Lin
In proc. ACM SIGIR, 2021
Publication | PDF | ArXiv

TREC Deep Learning Track: Reusable Test Collections in the Large Data Regime

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, Ellen M. Voorhees, and Ian Soboroff
In proc. ACM SIGIR, 2021
Publication | PDF | ArXiv

Significant Improvements over the State of the Art? A Case Study of the MS MARCO Document Ranking Leaderboard

Jimmy Lin, Daniel Campos, Nick Craswell, Bhaskar Mitra, and Emine Yilmaz
In proc. ACM SIGIR, 2021
Publication | PDF | ArXiv

Neural methods for effective, efficient, and exposure-aware information retrieval

Bhaskar Mitra
In ACM SIGIR Forum, 2021
Publication | PDF

Neural Methods for Effective, Efficient, and Exposure-Aware Information Retrieval

Bhaskar Mitra
PhD thesis, University College London, 2021
Publication | PDF | ArXiv

Conformer-Kernel with Query Term Independence at TREC 2020 Deep Learning Track

Bhaskar Mitra, Sebastian Hofstatter, Hamed Zamani, and Nick Craswell
In proc. Text REtrieval Conference (TREC), 2021
Publication | PDF | ArXiv

Overview of the TREC 2020 Deep Learning Track

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos
In proc. Text REtrieval Conference (TREC), 2021
Publication | PDF | ArXiv

Semantic Product Search for Matching Structured Product Catalogs in E-Commerce

Jason Ingyu Choi, Surya Kallumadi, Bhaskar Mitra, Eugene Agichtein, and Faizan Javed
Preprint, 2020
PDF | ArXiv

Conformer-Kernel with Query Term Independence for Document Retrieval

Bhaskar Mitra, Sebastian Hofstatter, Hamed Zamani, and Nick Craswell
Preprint, 2020
PDF | ArXiv

Local Self-Attention over Long Text for Efficient Document Retrieval

Sebastian Hofstätter, Hamed Zamani, Bhaskar Mitra, Nick Craswell, and Allan Hanbury
In proc. ACM SIGIR, 2020
Publication | PDF | ArXiv

On the Reliability of Test Collections for Evaluating Systems of Different Types

Emine Yilmaz, Nick Craswell, Bhaskar Mitra, and Daniel Campos
In proc. ACM SIGIR, 2020
Publication | PDF | ArXiv

Duet at TREC 2019 Deep Learning Track

Bhaskar Mitra and Nick Craswell
In proc. Text REtrieval Conference (TREC), 2020
Publication | PDF | ArXiv

Overview of the TREC 2019 Deep Learning Track

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M. Voorhees
In proc. Text REtrieval Conference (TREC), 2020
Publication | PDF | ArXiv

Incorporating Query Term Independence Assumption for Efficient Retrieval and Ranking using Deep Neural Networks

Bhaskar Mitra, Corby Rosset, David Hawking, Nick Craswell, Fernando Diaz, and Emine Yilmaz
Preprint, 2019
PDF | ArXiv

An Updated Duet Model for Passage Re-ranking

Bhaskar Mitra and Nick Craswell
Preprint, 2019
PDF | ArXiv

An Axiomatic Approach to Regularizing Neural Ranking Models

Corby Rosset, Bhaskar Mitra, Chenyan Xiong, Nick Craswell, Xia Song, and Saurabh Tiwary
In proc. ACM SIGIR, 2019
Publication | PDF | ArXiv

An Introduction to Neural Information Retrieval

Bhaskar Mitra and Nick Craswell
In Foundations and Trends® in Information Retrieval (FnTIR), 2018
Publication | PDF

A Line in the Sand: Recommendation or Ad-hoc Retrieval?

Surya Kallumadi, Bhaskar Mitra, and Tereza Iofciu
ACM RecSys Challenge, 2018
PDF | ArXiv

Cross Domain Regularization for Neural Ranking Models using Adversarial Learning

Daniel Cohen, Bhaskar Mitra, Katja Hofmann, and W. Bruce Croft
In proc. ACM SIGIR, 2018
🏆 Best Short Research Paper Award
Publication | PDF | ArXiv

Optimizing Query Evaluations Using Reinforcement Learning for Web Search

Corby Rosset, Damien Jose, Gargi Ghosh, Bhaskar Mitra, and Saurabh Tiwary
In proc. ACM SIGIR, 2018
Publication | PDF | ArXiv

Neural Networks for Information Retrieval

Tom Kenter, Alexey Borisov, Christophe Van Gysel, Mostafa Dehghani, Maarten de Rijke, and Bhaskar Mitra
ECIR, 2018
PDF

Neural Networks for Information Retrieval

Tom Kenter, Alexey Borisov, Christophe Van Gysel, Mostafa Dehghani, Maarten de Rijke, and Bhaskar Mitra
ACM WSDM, 2018
PDF | ArXiv

Neural Ranking Models with Multiple Document Fields

Hamed Zamani, Bhaskar Mitra, Xia Song, Nick Craswell, and Saurabh Tiwary
In proc. ACM WSDM, 2018
Publication | PDF | ArXiv

Neural information retrieval: introduction to the special issue

Nick Craswell, W. Bruce Croft, Maarten de Rijke, Jiafeng Guo, and Bhaskar Mitra
In the special issue of the Information Retrieval Journal (IRJ) on neural information retrieval, Springer Nature, 2017
Publication | PDF

Learning to Match using Local and Distributed Representations of Text for Web Search

Bhaskar Mitra, Fernando Diaz, and Nick Craswell
In proc. WWW, 2017
Publication | PDF | ArXiv

Reply With: Proactive Recommendation of Email Attachments

Christophe Van Gysel, Bhaskar Mitra, Matteo Venanzi, Roy Rosemarin, Grzegorz Kukla, Piotr Grudzien, and Nicola Cancedda
In proc. ACM CIKM, 2017
Publication | PDF | ArXiv

Toward Incorporation of Relevant Documents in word2vec

Navid Rekabsaz, Bhaskar Mitra, Mihai Lupu, and Allan Hanbury
In proc. Workshop on Neural Information Retrieval (Neu-IR'17), ACM SIGIR, 2017
PDF | ArXiv

Report on the Second SIGIR Workshop on Neural Information Retrieval (Neu-IR'17)

Nick Craswell, W. Bruce Croft, Maarten de Rijke, Jiafeng Guo, and Bhaskar Mitra
In ACM SIGIR Forum, 2017
Publication | PDF

Luandri: A Clean Lua Interface to the Indri Search Engine

Bhaskar Mitra, Fernando Diaz, and Nick Craswell
In proc. ACM SIGIR, 2017
Publication | PDF | ArXiv

Neural Networks for Information Retrieval

Tom Kenter, Alexey Borisov, Christophe Van Gysel, Mostafa Dehghani, Maarten de Rijke, and Bhaskar Mitra
In proc. ACM SIGIR, 2017
Publication | PDF | ArXiv

SIGIR 2017 Workshop on Neural Information Retrieval (Neu-IR'17)

Nick Craswell, W Bruce Croft, Maarten de Rijke, Jiafeng Guo, and Bhaskar Mitra
In proc. ACM SIGIR, 2017
Publication | PDF

Neural Text Embeddings for Information Retrieval

Bhaskar Mitra and Nick Craswell
In proc. ACM WSDM, 2017
Publication | PDF

Report on the SIGIR 2016 Workshop on Neural Information Retrieval (Neu-IR)

Nick Craswell, W. Bruce Croft, Jiafeng Guo, Bhaskar Mitra, and Maarten de Rijke
In ACM SIGIR Forum, 2016
Publication | PDF

Neu-IR: The SIGIR 2016 Workshop on Neural Information Retrieval

Nick Craswell, W. Bruce Croft, Jiafeng Guo, Bhaskar Mitra, and Maarten de Rijke
In proc. ACM SIGIR, 2016
Publication | PDF

Query Expansion with Locally-Trained Word Embeddings

Fernando Diaz, Bhaskar Mitra, and Nick Craswell
In proc. ACL, 2016
Publication | PDF | ArXiv

A Dual Embedding Space Model for Document Ranking

Bhaskar Mitra, Eric Nalisnick, Nick Craswell, and Rich Caruana
Preprint, 2016
PDF | ArXiv

Improving Document Ranking with Dual Word Embeddings

Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and Rich Caruana
In proc. WWW, 2016
Publication | PDF

Query Auto-Completion for Rare Prefixes

Bhaskar Mitra and Nick Craswell
In proc. ACM CIKM, 2015
Publication | PDF

Exploring Session Context using Distributed Representations of Queries and Reformulations

Bhaskar Mitra
In proc. ACM SIGIR, 2015
Publication | PDF

An Introduction to Computational Networks and the Computational Network Toolkit

Amit Agarwal, Eldar Akchurin, Chris Basoglu, Guoguo Chen, Scott Cyphers, Jasha Droppo, Adam Eversole, Brian Guenter, Mark Hillebrand, Xuedong Huang, Zhiheng Huang, Vladimir Ivanov, Alexey Kamenev, Philipp Kranen, Oleksii Kuchaiev, Wolfgang Manousek, Avner May, Bhaskar Mitra, Olivier Nano, Gaizka Navarro, Alexey Orlov, Marko Padmilac, Hari Parthasarathi, Baolin Peng, Alexey Reznichenko, Frank Seide, Michael L. Seltzer, Malcolm Slaney, Andreas Stolcke, Huaming Wang, Kaisheng Yao, Dong Yu, Yu Zhang, and Geoffrey Zweig
Tech report MSR-TR-2014-112, 2014
Publication | PDF