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ABSTRACT

We propose several small modifications to Duet—a deep neural ranking model—and evaluate the
updated model on the MS MARCO passage ranking task. We report significant improvements from
the proposed changes based on an ablation study.
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1 Introduction

In information retrieval (IR), traditional learning to rank [Liul 2009] models estimate the relevance of a document to a
query based on hand-engineered features. The input to these models typically includes, among others, features based
on patterns of exact matches of query terms in the document. Recently proposed deep neural IR models [Mitra and
Craswell, 2018]], in contrast, accept the raw query and document text as input. The input text is represented as one-hot
encoding of words (or sub-word components [Kim et al.,[2016, |Jozefowicz et al., 2016, Sennrich et al., 2015]])—and the
deep neural models focus primarily on learning latent representations of text that are effective for matching query and
document. Mitra et al.|[2017]] posit that deep neural ranking models should focus on both: (i) representation learning
for text matching, as well as on (ii) feature learning based on patterns of exact matches of query terms in the document.
They demonstrate that a neural ranking model called Duewith two distinct sub-models that consider both matches
in the term space (the local sub-model) and the learned latent space (the distributed sub-model)—is more effective at
estimating query-document relevance.

In this work, we evaluate a duet model on the MS MARCO passage ranking task [Bajaj et al.|[2016[]. We propose several
simple modifications to the original Duet architecture and demonstrate through an ablation study that incorporating
these changes results in significant improvements on the passage ranking task.

2 Passage re-ranking on MS MARCO

The MS MARCO passage ranking task [Bajaj et al.| 2016]] requires a model to rank approximately thousand passages
for each query. The queries are sampled from Bing’s search logs, and then manually annotated to restrict them to
questions with specific answers. A BM25 [Robertson et al., [2009] model is employed to retrieve the top thousand
candidate passages for each query from the collection. For each query, zero or more candidate passages are deemed
relevant based on manual annotations. The ranking model is evaluated on this passage re-ranking task using the mean
reciprocal rank (MRR) metric [|Craswell, |2009]. Participants are required to submit the ranked list of passages per
query for a development (dev) set and a heldout (eval) set. The ground truth annotations for the development set are
available publicly, while the corresponding annotations for the evaluation set are heldout to avoid overfitting. A public
leaderboarcﬂ presents all submitted runs from different participants on this task.

! While Mitra et al. [2017] propose a specific neural architecture, they refer more broadly to the family of neural architectures
that operate on both term space and learned latent space as duet. We refer to the specific architecture proposed by Mitra et al.| [2017]]
as Duet—to distinguish it from the general family of such architectures that we refer to as duet (note the difference in capitilization).

*http://www.msmarco.org/leaders.aspx


http://www.msmarco.org/leaders.aspx

3 The updated Duet model

In this section, we briefly describe several modifications to the Duet model. A public implementation of the updated
Duet model using PyTorch [Paszke et al., 2017 is available onlineﬂ

Word embeddings We replace the character level n-graph encoding in the input of the distributed model with word
embeddings. We see significant reduction in training time given a fixed number of minibatches and a fixed minibatch
size. This change primarily helps us to train on a significantly larger amount of data under fixed training time constraints.
We initialize the word embeddings using pre-trained GloVe [Pennington et al.,[2014] embeddings before training the
Duet model.

Inverse document frequency weighting In contrast to some of the other datasets on which the Duet model has
been previously evaluated [Mitra et al., 2017, Nanni et al.,2017]], the MS MARCO dataset contains a relatively larger
percentage of natural language queries and the queries are considerably longer on average. In traditional IR models, the
inverse document frequency (IDF) [Robertson, 2004 of a query term provides an effective mechanism for weighting the
query terms by their discriminative power. In the original Duet model, the input to the local sub-model corresponding
to a query ¢ and a document d is a binary interaction matrix X € RI4/*|9l defined as follows:
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We incorporate IDF in the Duet model by weighting the interaction matrix by the IDF of the matched terms. We adopt
the Robertson-Walker definition of IDF [Jones et al., [2000] normalized to the range [0, 1].
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Where, N is the total number of passages in the collection and n; is the number of passages in which the term ¢ appears
at least once.

Non-linear combination of local and distributed models |Zamani et al.[[2018]] show that when combining different
sub-models in a neural ranking model, it is more effective if each sub-model produce a vector output that are further
combined by additional multi-layer perceptrons (MLP). In the original Duet model, the local and the distributed
sub-models produce a single score that are linearly combined. In our updated architecture, both models produce a
vector that are further combined by an MLP—with two hidden layers—to generate the estimated relevance score.

Rectifier Linear Units (ReLU) We replace the Tanh non-linearities in the original Duet model with ReL U [Glorot
et al.,[2011]] activations.

Bagging We observe some additional improvements from combining multiple Duet models—trained with different
random seeds and on different random sample of the training data—using bagging [Breiman) |1996].

4 Experiments

The MS MARCO task provides a pre-processed training dataset—called “triples.train.full.tsv’—where each training
sample consists of a triple (g, p+, p—), where ¢ is a query and p and p_ are a pair of passages, with p,. being more
relevant to ¢ than p_. Similar to the original Duet model, we employ the cross-entropy with softmax loss to learn the
parameters of our model M:

*https://github.com/df cf93/MSMARCO/blob/master/Ranking/Baselines/Duet.ipynb
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Table 1: Comparison of the different Duet variants and other state-of-the-art approaches from the public MS MARCO
leaderboard. The update Duet model—referred to as Duet v2—benefits significantly from the modifications proposed
in this paper.

MRR@10
Model Dev  Eval
Other approaches
BM25 0.165 0.167
Single CKNRM [Dai et al., [2018] model 0.247 0.247
Ensemble of 8 CKNRM [Dai et al.,[2018]] models 0.290 0.271
IRNet (a proprietary deep neural model) 0.278 0.281
BERT [Nogueira and Cho) 2019] 0.365 0.359
Duet variants R
Single Duet v2 w/o IDF weighting for interaction matrix 0.163 -
Single Duet v2 w/ Tanh non-linearity (instead of ReL.U) 0.179 -
Single Duet v2 w/o MLP to combine local and distributed scores  0.208 -
Single Duet v2 model 0.243 0.245
Ensemble of 8 Duet v2 models 0.252  0.253
L=Egp,p- ~9[€(M(17P+ - Mgp_)l 4)
where, £(A) = log(1 4 e~ 74) (5)

Where, M, ,, is the relevance score for the pair (g, p) as estimated by the model M. Note, that by considering a single
negative passage per sample, our loss is equivalent to the RankNet loss [Burges et al., 2005].

We use the Adam optimizer with default parameters and a learning rate of 0.001. We set ¢ in Equation[5]to 0.1 and
dropout rate for the model to 0.5. We trim all queries and passages to their first 20 and 200 words, respectively. We
restrict our input vocabulary to the 71,486 most frequent terms in the collection and set the size of all hidden layers to
300. We use minibatches of size 1024 and train the model for 1024 minibatches. Finally, for bagging we train eight
different Duet models with different random seeds and on different samples of the training data. We train and evaluate
our models using a Tesla K40 GPU—on which it takes a total of only 1.5 hours to train each single Duet model and to
evaluate it on both dev and eval sets.

5 Results

Table[I] presents the MRR @10 corresponding to all the Duet variants we evaluated on the dev set. The updated Duet
model with all the modifications described in Section B—referred hereafter as Duet v2—achieves an MRR@10 of
0.243. We perform an ablation study by leaving out one of the three modifications—(i) IDF weighting for interaction
matrix, (i) ReLU non-linearity instead of Tanh, and (iii) LP to combine local and distributed scores,—out at a time.
We observe a 33% degradation in MRR by not incorporating the IDF weighting alone. It is interesting to note that the
Github implementation of the KNRM [Xiong et al.,2017] and CKNRM [Dai et al.,|2018|] models also indicate that
their MS MARCO submissions incorporated IDF term-weighting—potentially indicating the value of IDF weighting
across multiple architectures. Similarly, we also observe a 26% degradation in MRR by using Tanh non-linearity instead
of ReLU. Using a linear combination of scores from the local and the distributed model instead of combining their
vector outputs using an MLP results in 14% degradation in MRR. Finally, we observe a 3% improvement in MRR by
ensembling eight Duet v2 models using bagging. We also submit the individual Duet v2 model and the ensemble of
eight Duet v2 models for evaluation on the heldout set and observe similar numbers.

We include the MRR numbers for other non-Duet based approaches that are available on the public leaderboard in
Table[T] As of writing this paper, BERT [Devlin et al., 2018]] based approaches—e.g., [Nogueira and Cho| 2019]—are
outperforming other approaches by a significant margin. Among the non-BERT based approaches, a proprietary deep
neural model—called IRNet—currently demonstrates the best performance on the heldout evaluation set. This is
followed, among others, by an ensemble of CKNRM [Dai et al.| 2018]] models and the single CKNRM model. The
single Duet v2 model achieves comparable MRR to the single CKNRM model on the eval set. The ensemble of Duet
v2 models, however, performs slightly worse than the ensemble of the CKNRM models on the same set.

* https://github.com/thunlp/Kernel-Based-Neural-Ranking-Models



6 Discussion and conclusion

In this paper, we describe several simple modifications to the original Duet model that result in significant improvements
over the original architecture on the MS MARCO task. The updated architecture—we call Duet v2—achieves compara-
ble performance to other non-BERT based top performing approaches, as listed on the public MS MARCO leaderboard.
We note, that the Duet v2 model we evaluate contains significantly fewer learnable parameters—approximately 33
million—compared to other top performing approaches, such as BERT based models [Nogueira and Chol| 2019]]
and single CKNRM model [Dai et al., [2018]—both of which contains few hundred million learnable parameters.
Comparing the models based on the exact number of learnable parameters, however, may not be meaningful as most of
these parameters are due to large vocabulary size in the input embedding layers. It is not clear how significantly the
vocabulary size impacts model performance—an aspect we may want to analyse in the future. It is worth emphasizing
that compared to other top performing approaches, training the Duet v2 model takes significantly less resource and
time—1.5 hours to train a single Duet model and to evaluate it on both dev and eval sets using a Tesla K40 GPU—which
may make the model an attractive starting point for new MS MARCO participants. The model performance on the MS
MARCO task may be further improved by adding more depth and / or more careful hyperparameter tuning.
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