
Semantic Product Search for Matching Structured Product
Catalogs in E-Commerce

Jason Ingyu Choi
Emory University

in.gyu.choi@emory.edu

Surya Kallumadi
Home Depot

surya_kallumadi@homedepot.com

Bhaskar Mitra
Microsoft

bhaskar.mitra@microsoft.com

Eugene Agichtein
Emory University

eugene.agichtein@emory.edu

Faizan Javed
Home Depot

faizan_javed@homedepot.com

ABSTRACT
Retrieving all semantically relevant products from the product
catalog is an important problem in E-commerce. Compared to web
documents, product catalogs are more structured and sparse due to
multi-instance fields that encode heterogeneous aspects of products
(e.g. brand name and product dimensions). In this paper, we propose
a new semantic product search algorithm that learns to represent
and aggregate multi-instance fields into a document representation
using state of the art transformers as encoders. Our experiments
investigate two aspects of the proposed approach: (1) effectiveness
of field representations and structured matching; (2) effectiveness of
adding lexical features to semantic search. After training ourmodels
using user click logs from a well-known E-commerce platform, we
show that our results provide useful insights for improving product
search. Lastly, we present a detailed error analysis to show which
types of queries benefited the most by fielded representations and
structured matching.

1 INTRODUCTION
E-commerce platforms and web search engines share similar goals,
which is to display or recommend relevant items (e.g. web doc-
uments or products) for a search [9]. However, because product
catalogs are more heterogeneous and structured compared to web
documents, encoding such documents presents new challenges. For
instance, products can have several structured and unstructured
fields such as title, description and metadata. Each field can be
further divided into multiple instances (e.g. long description, short
description, dimensions, units), which vary significantly across
product domains [18]. To be successful, models first need to under-
stand the semantics of each field, and utilize fielded representations
to perform structured matching between query and document.

Before displaying ranked products to users, typical e-commerce
platforms undergo two phases: (1) candidate generation; (2) can-
didate re-ranking [9]. This work focuses on the candidate genera-
tion phase. Our goal is to retrieve all relevant products, which is
equivalent to maximizing the recall. To accomplish this, we pro-
pose a structured matching module (SMM) that leverages multiple
fielded representations to learn a structured matching function.
Our method has two advantages. First, SMM utilizes a bottom-up
approach to encode instances in each field and transforms these
partial representations into an overall document vector. This is
more effective when compared to encoding long, heterogeneous
documents in one shot. Second, because the encoder is trained to

learn query and document representations separately, production
systems can generate candidates faster by pre-computing product
embeddings.

For evaluation, we trained and validated our model using two
data sources in the home-improvement domain: (1) internal user
click logs; (2) product search relevance (PSR) dataset. The click logs
dataset is sub-sampled from our private click logs. For reproducibil-
ity, we selected PSR dataset, which is in the same e-commerce
domain but has human-annotated relevance labels. After evaluat-
ing our model on these two datasets, we show that incorporating
SMM after pre-trained transformer improves the overall matching
performance. Our contributions are:

• A new structured matching module (SMM) that extends
Siamese transformer structures by incorporating fielded rep-
resentations and lexical signals.

• A large-scale empirical evaluation, demonstrating promis-
ing performance of SMM for semantic product search in
e-commerce.

Next, we review related work to place our contributions in context.

2 RELATEDWORK
Traditional ranking approaches combined probabilistic signals and
lexical features such as term frequency and document length to
rank documents according to their relevance [11, 12]. However, the
main challenges of lexical ranking models are on their coverage
since these models cannot make any semantic connection. Distri-
butional semantics [6] was introduced to solve this challenge by
training a language model using latent features to obtain a vector
representation for each word.

The earliest models were representation-based models that en-
code two texts into a fixed-size vector, and computes the similarities
by taking cosine or dot product between two vectors [4, 5]. However,
these methods were limited because the network did not consider
any interaction between the two inputs. To address this problem,
interaction-based models were introduced to capture more complex
patterns between query and document matrix [16]. To combine
interactions with lexical signals, hybrid models were proposed and
validated the effectiveness of lexical matching when combined with
semantic matching [2, 8]. Several approaches evaluated the poten-
tials of incorporating structured information to a document ranking
task [11, 18].

Recently proposed text matching approaches adopt transformer-
based encoders to benefit from their rich semantics. However, since

Figure 1: Overall architecture of our structured semantic matching model.

transformers use cross-encoder structures, there have been several
attempts to decouple the two inputs to learn semantically mean-
ingful vectors for scalable comparisons [3, 10, 17]. In our work, we
maintain the Siamese structure to benefit from these advantages.

3 PROPOSED APPROACH
In this section, we formally explain the problem and present an
overview of our proposed architecture, described in Figure 1. Our
model is composed of two sub-modules: (1) context encoders; (2)
structured matching modules.

Problemandproduct catalog description. Given a user query
𝑄 and product 𝐷 , we define product fields 𝐹 = {𝐹1 ...𝐹𝑛} and field
instances 𝐼 = {𝐹1𝑖 ...𝐹𝑛𝑘 }. All products share the same fields as
described in Table 1. Instances are attributes of each field that rep-
resent certain aspects of a product. For all products, the number of
fields 𝑛 is fixed to 7 while the number of instances 𝑘 varies between
fields and products. The last field titled Product search terms is col-
lected from previously issued queries that resulted in a click on
this product. We sampled these queries from the training data, and
selected the top 10 unique queries based on frequency. In addition,
we highlight that Title field does not have other instances except
the product title.

Fields Instances
Title Product title
Description Types of descriptions (short, long)
Product category Category
Metadata Additional descriptions (color, texture)
Brand Brand information (brand name)
Numeric Numeric values (height, width)
Product search terms Top-10 queries from click logs
Table 1: Seven fields selected for representing products.

For this study, we represented each field 𝐹𝑖 as a concatenated
sequence of tokens from its instance group. Based on the input
pairs (𝑄,𝐷 = [𝐹1 ...𝐹𝑛]), the goal is to train a function 𝑓 that maps

this input into a probability score 𝑠 , indicating the likelihood of
relevance.

𝑓 (𝑄,𝐷) ∈ [0, 1] (1)

Context encoders. When encoding query and fields, we used
a pre-trained DistilBERT [14], which is a distilled version of BERT
that retains 97% of the original performance. We chose this model
over the original BERT because DistilBERT required less GPU mem-
ory and has faster convergence. The weights of transformer blocks
are initialized from a pre-trained model, and are tuned using our
data. Our encoder used 6 hidden layers with 12 attention heads.

To obtain the sentence embeddings, we used the mean pooling
strategy that takes the mean of hidden states for each sequence
position from the final transformer block. This method has shown
to be effective compared to directly using the vector for [CLS]
token or max-pooling, and is similar to extracting bag-of-words
representations where words have interacted with others through
multiple self-attention layers [10, 17]. These pooled vectors are
stacked to form query and document matrices 𝑄̂ and 𝐷̂ .

Structuredmatchingmodules (SMM). The goal of SMM is to
extract matching signals from 𝑄̂ and 𝐷̂ . Based on previous literature,
we applied element-wise multiplication and subtraction to these
matrices to generate features [10, 18]. We emphasize that because
𝐷̂ is a stack of field vectors, element-wise operations allow different
field vectors to interact with query vectors. This is equivalent to
performing pairwise comparisons between query and field in a
latent space. In addition, we generated a binary matrix𝑀 from the
query and document tokens to encode lexical matches. These three
outputs are concatenated as following:

[|𝑄̂ − 𝐷̂ |; 𝑄̂ ◦ 𝐷̂ ; 𝑀] (2)

These outputs are then fed to two layers of non-linear trans-
formations. We used ReLU activation and dropout between these
layers. Binary cross-entropy was minimized to predict relevant (1)
and non-relevant (0) labels using Adam with 1e-4 learning rate and
16 batch size. Learning rate was warmed-up over the first 10% of

our training data, and linearly decayed with 0.01 decay rate. 0.1
dropout probability was used on all transformer layers to improve
regularization. We used 0.5 dropout for our feed-forward layers.

4 EXPERIMENTAL SETUP
In this section, we present an overview of our data collection pro-
cess, followed by statistics of our training, validation and two test
datasets. The labels of the first test dataset were generated from
clicks while the second test dataset was manually annotated from
three human workers.

Training dataset from internal click logs. For this study, we
used the subset of click logs from a popular E-commerce platform.
For each query, we collected the top 100 (product, clicks) pairs,
which are ranked by a production system. We define each entry
in our dataset as (query, product, clicks) triple. In total, there are
11,650,964 entries, 1,675,630 unique queries and 3,372,715 unique
products. Since our goal is to retrieve all relevant products and not
necessarily rank them, we defined a click threshold 𝑟 to distinguish
positive and negative pairs. After manual evaluation, 𝑟 = 5 was used
to convert click values into a binary label. We filtered out queries
that do not contain any relevant product, has a length smaller than 3
characters, or contain numeric values only. For products, we filtered
out items that contain too few attributes or do not contain important
attributes such as Title and Description. Lastly, we reserved 5,000
unique queries for a validation set and another 5,000 unique queries
for a test set.

Training Validation Test
Entry 11,650,964 227,276 219,728
Unique query 258,666 5,000 5,000
Relevant 51.8% 50.7% 52.2%
Not relevant 48.2% 49.3% 47.8%
Unique products 384,506

Table 2: Click logs training, validation and test statistics.

Human-annotated test set from Kaggle. In addition to the
click logs dataset, we used a publicly available E-commerce dataset
titled Product Search Relevance (PSR) dataset, which was released
in 2016 as a Kaggle competition by an e-commerce site in home-
improvement domain1. The goal is to perform a more robust evalu-
ation since labels from the first dataset are heuristically generated
from clicks. Instead, the labels of PSR dataset is obtained from three
human workers where 1 indicates irrelevant, 2 as partially relevant
and 3 as perfect match. Each (Q, D) pair was given to at least three
workers, and the final scores were averaged. We observed that this
dataset lacks negative samples since 83.9% of the pairs are labeled at
least partially relevant (>=2). After rounding off the decimal values,
we reduced the labels into three discrete labels ∈ [1, 2, 3]. 𝑟 = 2.5
was used to convert labels into binary labels.

In addition to these ground-truth labels, we recruited one domain
expert and asked to annotate 1,000 randomly sampled queries into
6 classes of Brand/Collection, Color/Finish, Unit, Material, Model,
and Typo for error analysis. Each class represents whether the
query terms contain important keywords that identify specific
1https://www.kaggle.com/c/home-depot-product-search-relevance

classes. Given the nature of multi-intent queries, it is possible to
have multiple classes (e.g. Black Samsung TV) per each sample.
Our annotated results show that 17.4%, 4.7%, 21.8%, 5.7%, 3.7%, and
11.7% queries (with duplicates) belong to each class respectively.

Baseline models and metrics. We chose baselines models in
two groups: (1) lexical baselines; (2) neural baselines. For lexical
baselines, we will report the performance of BM25 and BM25F
rankers, which are tuned on our validation set. Please note that
we are not using top@k retrieved results from lexical models to
do re-ranking task, but the scores from these models are directly
computed as a final matching score for test samples. To index the
documents, we used an open-source indexing software titled Terrier
[7], and indexed using 7 pre-defined fields from Section 3. Standard
pre-processing steps such as removing stopwords and stemming
are applied before indexing.

For neural baselines, we experimented with an interaction-based
Arc-II model and a hybrid model Duet [4, 8]. These two models
are trained in a pairwise setting to minimize rank hinge loss. To
evaluate matching performance, we chose NDCG, MAP and MRR
with 𝑘 ∈ [1, 5], since these metrics capture how accurately our
model retrieves the correct items and their respective positions [13].
The positions are ranked by the output score from our model. All of
thesemodels including ours are implemented in PyTorch framework
[1, 15], and hyperparemeters are tuned using the validation set.

5 EMPIRICAL RESULTS AND DISCUSSION
We report the comparison of our method against other baselines,
followed by feature ablation and error analysis.

Results, ablation study and insights. Table 4 shows that our
model outperformed all lexical and neural baselines, showing the ef-
fectiveness of combining transformers and SMM. Compared to duet,
our model achieved 2.20% improved NDCG@5, 0.93% improved
MAP and 4.14% improved MRR respectively. For non-transformer
models, duet outperformed all other baselines, validating the effec-
tiveness of leveraging distributed and lexical representations.

Models NDCG@1 NDCG@5 MAP MRR

BM25 0.280 0.384 0.419 0.462
BM25F 0.287 0.384 0.421 0.466
ArcII 0.285 0.380 0.412 0.465
Duet 0.301 0.408 0.428 0.482
Ours 0.309* 0.417* 0.432 0.502*

Table 4: Performance comparison of our proposedmodel on
PSR test dataset. “*” indicates statistical significance of im-
provement based on two-tailed Student’s t-test with 𝑝 < 0.05,
compared to Duet model.

Tomeasure the gains from FMM, we conducted an ablation study
by training a pre-trained DistilBERT (DB) without fielded represen-
tations. For this model, documents are encoded as one long text,
thus removing any structured matching advantage. According to
Table 5, after adding FMM, we observed statistically significant
improvements on MAP and MRR on both test set. Interestingly, we
noticed the improvements on NDCG@1 was very small. We hy-
pothesize that FMM does not contribute much to obvious cases but

https://www.kaggle.com/c/home-depot-product-search-relevance

Query labels NDCG@1 NDCG@5 MAP MRR
DB Ours DB Ours DB Ours DB Ours

Brand/Collection 0.276 0.263 0.418 0.404 0.427 0.416 0.479 0.474
Color/Finish 0.311 0.278 0.429 0.394 0.443 0.412 0.504 0.460
Unit 0.264 0.302 0.374 0.390 0.391 0.407 0.449 0.482
Material 0.247 0.376 0.416 0.438 0.447 0.470 0.484 0.591
Model 0.257 0.283 0.364 0.383 0.410 0.404 0.451 0.460
Typo 0.312 0.334 0.423 0.428 0.454 0.462 0.521 0.541
All others 0.306 0.317 0.422 0.433 0.442 0.452 0.504 0.517

Table 3: Error analysis of different types of queries for DistilBERT (DB) and our model with FMM.

more to harder cases with heterogeneous instances. For significance
testing, we used two-tailed Student’s t-test with 𝑝 < 0.05.

Error Analysis. To more understand where FMM helps and
fails, we conducted an error analysis to see trade-offs in metrics
after adding FMM. Table 3 shows queries containing field-specific
terms are harder than general queries since retrieval performances
on All others class are higher than those of other classes. Among
fields, matching numerical units are shown to be the most difficult
task based on NDCG. This is true because numbers are usually
filtered out before training, and without understanding the con-
versions between different units, it becomes very challenging for
models to match query without sufficient text features. After adding
FMM, we observed several improvements over various types of
queries. There is a decrease in performance for Brand/Collection
and Color/Finish types, but our model performed better on all other
labels. Interestingly, our proposed model improved on Typo class,
showing the benefits of subword lexical matching. Similarly for
Units field, knowing the occurrences of unit matches benefited the
overall matching performance. To conclude, we claim that our pro-
posed FMM modules reduce the general errors by providing extra
evidence from query to field relationships.

Models Test NDCG@1 NDCG@5 MAP MRR

DB PSR 0.304 0.411 0.428 0.488
Ours PSR 0.309 0.417 0.437* 0.502*

DB CL 0.682 0.696 0.647 0.785
Ours CL 0.682 0.712* 0.705* 0.807*

Table 5: Ablation study of our proposed model against Dis-
tilBERT (DB) baseline after removing FMM on both product
search relevance (PSR) dataset and click logs (CL) dataset.

Conclusions. We proposed a novel and effective method for
matching queries to structured product descriptions for e-commerce
search and recommendation. We adopt a state of the art transform-
ers in Siamese architecture to avoid jointly encoding query and doc-
uments for improved scalability. Multiple fielded representations
are encoded to first form document matrix, and matched against
query vectors to extract heterogeneous matching signals. After
evaluating our method on two e-commerce dataset, we showed
promising directions of representing documents into multiple vec-
tors both rough ablation study and error analysis. Overall, our
results provide useful insights into the benefits and limitations of

the proposed method, which could further benefit improvements
to e-commerce matching, search, and recommendation.

REFERENCES
[1] J. Guo, Y. Fan, X. Ji, and X. Cheng. Matchzoo: A learning, practicing, and develop-

ing system for neural text matching. In Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages
1297–1300, 2019.

[2] C. V. Gysel, M. De Rijke, and E. Kanoulas. Neural vector spaces for unsupervised
information retrieval. ACM Transactions on Information Systems (TOIS), 36(4):1–
25, 2018.

[3] S. Hofstätter, M. Zlabinger, and A. Hanbury. Tu wien@ trec deep learning’19–
simple contextualization for re-ranking. arXiv preprint arXiv:1912.01385, 2019.

[4] B. Hu, Z. Lu, H. Li, and Q. Chen. Convolutional neural network architectures
for matching natural language sentences. In Advances in neural information
processing systems, pages 2042–2050, 2014.

[5] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning deep struc-
tured semantic models for web search using clickthrough data. In Proceedings of
the 22nd ACM international conference on Information & Knowledge Management,
pages 2333–2338, 2013.

[6] Q. Le and T. Mikolov. Distributed representations of sentences and documents.
In International conference on machine learning, pages 1188–1196, 2014.

[7] C. Macdonald, R. McCreadie, R. L. Santos, and I. Ounis. From puppy to maturity:
Experiences in developing terrier. Proc. of OSIR at SIGIR, pages 60–63, 2012.

[8] B. Mitra, F. Diaz, and N. Craswell. Learning to match using local and distributed
representations of text for web search. In Proceedings of the 26th International
Conference on World Wide Web, pages 1291–1299, 2017.

[9] P. Nigam, Y. Song, V. Mohan, V. Lakshman, W. Ding, A. Shingavi, C. H. Teo,
H. Gu, and B. Yin. Semantic product search. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
2876–2885, 2019.

[10] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 3973–3983, 2019.

[11] S. Robertson, H. Zaragoza, and M. Taylor. Simple bm25 extension to multiple
weighted fields. In Proceedings of the thirteenth ACM international conference on
Information and knowledge management, pages 42–49, 2004.

[12] S. E. Robertson and S. Walker. Some simple effective approximations to the
2-poisson model for probabilistic weighted retrieval. In SIGIR’94, pages 232–241.
Springer, 1994.

[13] M. Sanderson and J. Zobel. Information retrieval system evaluation: effort,
sensitivity, and reliability. In Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in information retrieval, pages
162–169, 2005.

[14] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[15] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz, and J. Brew. Huggingface’s transformers: State-of-the-art
natural language processing. ArXiv, abs/1910.03771, 2019.

[16] C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power. End-to-end neural ad-hoc ranking
with kernel pooling. In Proceedings of the 40th International ACM SIGIR conference
on research and development in information retrieval, pages 55–64, 2017.

[17] Y. Yang, S. Yuan, D. Cer, S.-y. Kong, N. Constant, P. Pilar, H. Ge, Y.-H. Sung,
B. Strope, and R. Kurzweil. Learning semantic textual similarity from conversa-
tions. In Proceedings of The Third Workshop on Representation Learning for NLP,
pages 164–174, 2018.

[18] H. Zamani, B. Mitra, X. Song, N. Craswell, and S. Tiwary. Neural ranking models
with multiple document fields. In Proceedings of the eleventh ACM international
conference on web search and data mining, pages 700–708, 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Experimental Setup
	5 Empirical Results and Discussion
	References

