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Abstract

Datasets that consist of structured records are ubiquitous, encompassing tabular
data, video metadata, configuration files, medical records, JSON entities, and sci-
entific datasets and more. Individual records in such datasets may contain col-
lections of fields which are of heterogeneous data types, including hierarchical
composition of other heterogeneous types. However, few approaches can handle
this type of data natively. We aim to bridge this gap by introducing an adapted
Transformer-based architecture and employing a discrete diffusion objective akin
to masked modeling. The diffusion formulation enables strong performance with-
out the data augmentation that would be needed in standard left-to-right auto-
regressive approaches, as we demonstrate empirically. Our model also allows
flexible handling of text, categorical, and numerical values via a Gaussian mixture
approach. These modeling choices offer effective inductive biases for generative
modeling of structured data. Experiments demonstrate favorable results on both
sparse and dense tabular datasets for missing value imputation and data synthesis,
as well as in a challenging scientific domain where our model obtains state-of-the-
art performance while providing valuable uncertainty estimates.

1 Introduction

Structured data is ubiquitous and may contain complex heterogenous types. For example, such data
may contain entities (as records) which in turn are dictionaries of heterogeneous properties (as fields)
such as a textual name property, a numerical age property, and an address property that has further
structured components such as house number, street, and zip code. Modeling structured data is
critical for applications like missing value imputation, data synthesis, and knowledge-intensive rea-
soning. However, existing approaches struggle to handle the heterogeneous data types and complex
relationships present in real-world structured datasets.

Recent works such as Lu et al. (2023) and Jiang et al. (2023) have explored using autoregressive
language models for modeling structured data by serializing it into text sequences. However, the
serialization of structured records into text adds an extra burden of understanding and recovering the
underlying structure to the model. The sequential left-to-right nature of the language modeling ob-
jective can also limit the model’s ability to capture important correlations between fields of a record.
Critically, autoregressive models are not inherently equipped to handle missing data during infer-
ence and may require significant data augmentation to learn bi-directional relationships (Berglund
et al., 2023; Allen-Zhu & Li, 2023). Lastly, the textual representations of heterogeneous data types,
such as numerical and categorical properties, are suboptimal for both the predictive model to express
distributions over possible values and for computing the prediction error with respect to the ground
truth values as part of the model’s training objectives.

To address these challenges, we propose to explicitly model structured records and their fields
which provides a more natural and effective solution in this context. By treating records as



dictionary entities of properties of various types—e.g., numerical, categorical, text, and com-
positions of these data types—we can imbue our models with useful inductive biases for cap-
turing relevant relationships. The dictionary representation enables flexible handling of missing
values. Figure 1 sets this in contrast to modelling records in flattened tabular format. To re-
alize this, we introduce the Diffusion Models for Structured Knowledge (DiSK), a framework
for generative modeling of structured records with heterogeneous fields. DiSK employs a de-
noising diffusion objective which iteratively masks and reconstructs field values. The diffu-
sion formulation allows seamless integration of losses for text, categorical, and numerical val-
ues, enabling DiSK to natively handle the data type diversity in real-world structured datasets.

Entity 1

Entity 2

Entity 2

Entity 1

Hierarchical Representation

Tabular Representation

Figure 1: Hierarchical representations of entities
can model rich relationships that can be difficult to
capture with dense tabular representations, which
can be prohibitive for sparse data. Black squares
correspond to non-existing values, making the ta-
ble sparse. Fields (nodes) across entities are as-
sumed to be distinct with the color representing
different data types.

We demonstrate the effectiveness of this ap-
proach on a range of challenging structured
data tasks. For sparse datasets, DiSK outper-
forms specialized techniques that cannot handle
significant missing data. It is also competitive
with the leading tabular learning approaches on
dense, purely tabular datasets.

In summary, our contributions are

1. We derive a simple yet effective objec-
tive for structured data modeling using dis-
crete state diffusion. The resulting approach
shares similarities with masked modeling,
while providing a principled framework for
handling heterogeneous data types.

2. We propose novel architectural design
choices, capable of modeling categorical
and numerical properties as well as text.

3. We conduct extensive experiments and abla-
tions to validate the effectiveness of our pro-
posed objective and model across a diverse
range of datasets, demonstrating strong per-
formance on various tasks.

The remainder of this paper is organized as fol-
lows: In Section 2, we present the derivation of our diffusion-based objective and discuss its con-
nection to masked modeling, highlighting the key desiderata and motivating our design choices.
Section 2.2 provides an intuitive overview of our proposed diffusion model for structured data. The
full derivation of the model can be found in the appendix. In Section 3 we describe our architectural
choices and contributions in detail with extensive ablations in the appendix. In Section 4 we run ex-
periments on a range of settings bridging the gap between dense tabular data from multiple domains
and sparse scientific records, obtaining competitive performance across experiments.

2 Generative Modeling of Structured Entities

Masked modeling is a common approach to modeling data across modalities such as text sequences
or images (Pathak et al. (2016); Devlin et al. (2019); He et al. (2021)). In this section, we describe
the training procedure of a generative model with masked modeling similar to BERT (Devlin et al.,
2019) to fill-in arbitrary structured entities. We then show a simple modification to the loss makes it
equivalent to an absorbing continuous-time diffusion over discrete states. Our diffusion formulation
provides strong theoretical grounding for an intuitive extension to the masked modeling objective
and allows samples to be more consistent and of higher quality by smoothing the generative process
over small steps in the number of properties unmasked per iteration.

2.1 Masked Modeling

Our goal is to obtain a generative model of some structured data, that is able to generate plausible
completions of an entity conditioned on any subset of its properties. A naive baseline approach
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to training an entity completion model, parameterized by θ, is to directly predict hidden properties
based on a subset of available properties using a fixed masking rate e.g., 15%, similar to Devlin
et al. (2019). Consider an entity x ∼ p(x) where each dimension corresponds to a property. At
each training step, the model is given a collection of properties associated with the masked entity,
x̃, where some property values are replaced with a special mask token. The model then predicts the
true values of the masked properties conditioned on the visible properties

LCT = E

 ∑
d|x̃d is masked

− log pθ
(
xd | x̃

) , (1)

which amounts to a per-property reconstruction loss (e.g., using cross-entropy or mean squared
error). At inference time, the model is used exactly in the same fashion. A collection of properties
is given and the model predicts all remaining properties in a single step.

This approach does not necessarily yield the highest quality samples. Most state-of-the-art genera-
tive models across modalities rely on autoregressive generation in some form (Rombach et al., 2022;
Touvron et al., 2023a; Chameleon Team, 2024). It is natural to expect improved quality of generated
samples if the model is allowed to fill in the missing properties autoregressively (Ghazvininejad
et al., 2019). At the cost of more computation, the diffusion approach we will formalize in the next
section greatly improves the quality of generated samples (see Appendices B.1.2, for an intuitive
example, and B.1.1 for a full ablation).

2.2 A Formulation of Diffusion over Heterogenous Data

An extension of Masked Modeling Contemporary large language models (LLMs) can be em-
ployed to reason over structured data. However, common LLMs Radford et al. (2019); Brown et al.
(2020); Touvron et al. (2023a) are designed to exploit the sequential nature of text, with a fixed
left-to-right prediction and conditioning direction. This unidirectional bias can lead to suboptimal
performance on information retrieval tasks in which the order of tokens matters (see reversal curse
in Berglund et al. (2023); Allen-Zhu & Li (2023)). In contrast, our goal is to model entities with an
unordered set of properties, necessitating a model that can handle bidirectionality well. We build on
standard masked language modeling, but with two key modifications to better suit our problem set-
ting. First, instead of predicting all masked elements simultaneously, we propose an autoregressive
approach where masked properties are predicted one at a time. Figure 2 provides a visual compari-
son of our method with the standard masked language modeling approach. Second, we sample the
masking rate uniformly for each training step, rather than using a fixed rate. This is a crucial differ-
ence that allows the model to learn from a diverse set of masking patterns and enables more flexible
generation during inference. In the following, we provide theoretical justification for these design
choices by formulating the generative modeling problem as a continuous-time diffusion process over
discrete states.

We formulate our approach as a diffusion process based on Discrete Denoising Diffusion Prob-
abilistic Models (D3PM) (Austin et al., 2021), specifically continuous-time discrete-state diffu-
sion (Campbell et al., 2022) with an absorbing state. The process can be summarized as (1) Forward:
For an entity x0 ∼ p(x0) with D properties, individual properties randomly flow into the absorbing
masked state. At the end of this process, all properties are masked. (2) Reverse: The reverse pro-
cess, which is completely defined by the forward process but is generally intractable, is modeled via

Single-step masked modeling

Property 1
Model
StepProperty 2

Property n

Property 1

Property 2

Property n

Absorbing-state Diffusion

Figure 2: Entites are treated as collections of properties. Generating samples with keys “property j”
using masked modeling in one step (left) and autoregressively (right), in which case property values
are unmasked in random order.
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a parameterized conditional distribution, at step t, pθ(xt−1|xt) as the random de-masking of indi-
vidual properties, xd. The objective is to maximize the log-likelihood of the data under this reverse
conditional.

Forward Process The noising process randomly masks an entity’s properties at a sampled rate.
Surprisingly, the objective reduces to the standard reconstruction loss weighted by masking amount.
The complete derivation is available in Appendix A.3

Reverse Process We know from our choice of the forward process that at time t = 1 the state
will be fully masked with probability 1. In the reverse process, Equation 8 (see Appendix A.2) tells
us that once a property has been de-masked, it will stay de-masked until t = 0. Masked properties
transition to de-masked states at a rate proportional to the model’s prediction given the current state.
Because all the properties flow at the same rate, the order in which the properties are de-masked
is random, irrespective of the model. As we approach t = 0, the rate approaches infinity, fully
de-masking all properties by t = 0.

The reverse process can be simulated as depicted by the right side of Figure 2. Start in the fully
masked state, uniformly randomly choose a property to predict and replace the mask by the predic-
tion. Repeat until no mask remains. While this simulation disregards event timing, that omission
is inconsequential for our purposes. Unmasking is not restricted to removing one mask at a time;
instead, we can employ multiple leaps (> 1) in every step (Campbell et al., 2022). In the limit of
leap size D, the single step masked modeling method is recovered.

Likelihood bound The choice of Continuous-Time (CT) absorbing state kernel yields a surpris-
ingly simple likelihood bound. It can be written, very similarly to the masked modeling loss, as a
denoising loss weighted by the amount of masking noise.

Proposition 1 (informal) For the reverse diffusion from the fully masked state towards the data
distribution p(x0), an upper bound on the model negative log-likelihood Ep(x)[− log pθ0(x)] can be
given by

LCT = Eπ∼U(0,1), x̃∼ψ(x̃|π)

C(π) ∑
d|x̃d=0

− log pθ
(
xd0 | x̃

) , (2)

where ψ(x̃|π) is the distribution of entities randomly masked with rate π and C(π) is a correction
factor that weighs down contributions where more elements were masked than the expected number
Dπ. The red term is the usual reconstruction loss.

A full derivation is available in Appendix A.

How can we model numerical quantities faithfully? So far, we have only discussed discrete-
state diffusion, valid for categorical properties. Here, we turn our attention to numerical properties.
To predict numerical values with high precision, we can discretize the values using a large but finite
number of bins and apply the diffusion framework developed thus far. However, the full softmax can
become quite expensive to evaluate. Though there are several ways to alleviate this issue, such as
hierarchical softmax (Morin & Bengio, 2005) or various contrastive alternatives (Oord et al., 2018;
Sohn, 2016; Oh Song et al., 2016; Schroff et al., 2015), we will instead approximate the softmax
when the number of bins (classes) tends to infinity.

We will end up using a Gaussian Mixture Model (GMM) for numerical properties. But first, to
develop some intuition, we will explore a simplified approach where we assume we only want to
model Gaussian numerical properties. A reasonable categorical model of continuous values captures
ordinal properties and approaches Gaussian uncertainty in the limit of a large number of classes.
Suppose the “correct” target value is x, we can take the discrete distribution P (bi) ∝ exp−||x −
bi||2, where bi is the bin-center of the i-th bin. In this case, we can write out the cross-entropy loss
over bins, assuming x is in the i-th bin, as follows − logP (bi) = − log softmax(−(b − x1)2)i,
which is simply − log exp(−(bi − x)2), ignoring the normalization, we can use squared error (bi −
x)2 as a de-masking loss. In this setup, optimizing the cross-entropy over a large number of bins
amounts to optimizing the center of the target bin using the mean-squared-error (MSE), avoiding a
potentially prohibitive computation.

4



0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

GMM - 256

0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

GMM - 1 (MSE)

0.00 0.25 0.50 0.75 1.00
x

0

1

2

3

4

D
en

si
ty

data

256

1

Figure 3: Generated samples using a DiSK with GMM likelihood. The GMM uses 256 components
(left) or 1 component (middle) which is equivalent to MSE when we fix the variance to unity. (right)
A histogram of the data with the DiSK learned marginals.

However, this results in reduced model expressivity and inability to capture multi-modal distribu-
tions of properties. A Gaussian Mixture Model (GMM) with additional components can address
this. Figure 3 presents a toy DiSK model trained on the two-moons dataset, treating x and y as nu-
merical and class as a categorical property. Contrary to the MSE-trained model, the GMM-trained
model effectively captures the multiple modes of x’s marginal distribution.

With our loss function and generative procedure defined, we can move our focus to the neural archi-
tecture we will employ.

3 DiSK Architecture

This section describes the DiSK model architecture, with Figure 4 showing a high-level overview.
Each step will be further detailed throughout this section. DiSK takes an entity with an arbitrary
number of properties of any type (any of which can be missing or “masked”). The property keys are
used to generate semantic hierarchical encodings, and property values are passed to an encoder for
the appropriate type. The outputs of both encoding steps are added together. For missing or masked
properties, values are not encoded and only their hierarchical encodings are used. A transformer
module aggregates information across properties and each element gets decoded into the appropriate
probabilistic parameters we would later sample from i.e., GMM means, variances, and weights for
numerical properties and logits for text and categorical properties. Only masked properties are
decoded, and the loss is evaluated on them. We will now provide more details on each step (see
Appendix C for technical details).

“iPhone 15 Pro Max”Phone.Model

MaskedPhone.Launch.Month

171 gPhone.Weight

:

:

:

Input Entity

Text Num.Cat.Color Scheme:

RNN(“Phone”, “Launch”, “Month”)

Hierarchy 
Encoding

Text 
Decoder

Categorical 
Decoder

Numerical 
Decoder

Text 
Encoder

Categorical 
Encoder

Numerical 
Encoder

⊕ ⊕ ⊕

Entity Encoding (Attention)

GMM Params Logits Logits Sequence

Figure 4: The DiSK architecture. Keys from the input entity are used by an RNN to generate
hierarchical encodings (left). They are then added to encoded values (right) the result is processed
by an encoder and type-specific decoders output logits and GMM parameters. Dashed lines are not
computed i.e.masked values are not encoded and values which were not masked are not predicted.
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Hierarchical positional encoding Our goal is for the model to understand entities’ properties
semantically. The hierarchical encodings are generated using a sequence model over the keys; in
our setup, we use a simple RNN over the path to the node of interest (see Figures 4 and 8).

Encoding Each property value will first be embedded. Embedding schemes differ for each type
of input, in this case, text, categorical and numerical. Categorical variables, just like text tokens, are
one-hot encoded, as is standard in language modeling. Numerical values need to be treated differ-
ently in order to preserve their numeracy properties. DICE (Sundararaman et al., 2020) embeddings
or the standard sinusoidal embeddings (Vaswani et al., 2017) with learnable frequencies are options
we explore. Though DICE embeddings preserve magnitude and order by construction, we could
not find conclusive evidence for the superiority of either approach (see ablations in Appendix B.2).
Each embedding passes through an encoder module tailored to that property type. The encoder ar-
chitecture suits the input modality, mapping inputs to fixed-dimensional vector representations. We
use MLPs with residual connections for categorical and numerical properties and we extract the first
token representation from a Transformer encoder for text fields. Note that we could also use pre-
trained language models as encoders for text properties but that is beyond our scope. These encoders
map heterogeneous properties into a shared entity latent space. Their role is to transform arbitrary
input types into a common representation format that the entity transformer encoder can operate on.

Entity encoding and decoding to property values The encodings from the last stage are aug-
mented with positional encodings (using element-wise addition). Multiple Transformer encoder
layers process the resulting collection of vectors. Masked elements are not attended to. With the full
entity context available, property encodings are decoded using specialized decoders. While tying
the decoders is an option, we opt for disjoint decoder modules in this work. Decoders output prob-
abilistic parameters - logits for categorical/text, and GMM parameters (µ, σ, weight) for numerical
values. These parameters define the distributions we can sample from in the reverse process. For
text properties, we use a transformer decoder to generate a sequence of tokens conditioned on the
property encoding in teacher-forcing fashion. Such bottlenecks were previously explored in Mu
et al. (2023) and shown to give good performance.

4 Experiments

Our goal is to bridge gaps between dense tabular formats and more sparse and hierarchical data.
We will start by showing that DiSK favorably compares on tabular data against specialized dense
models. Next, we move beyond dense data to a sparse, but still tabular scientific dataset. Last, we
provide experiments on GSMArena, a cellphone property dataset with heterogeneous, hierarchical
features.

Table 1: Performance of a GBDT model trained on a downstream task on data generated by different
tabular generative models (and on real data for comparison). Runs are averaged across 5 synthetic
datasets and 10 GBDT training runs. Dashes denote results worse than the optimal constant solution.

Method ABAL (R2) ADUL (F1) BUDD (F1) CALI (R2) CARD (F1) CHUR (F1) DIAB (F1)

0 Real 0.556±0.004 0.815±0.002 0.906±0.002 0.857±0.001 0.738±0.001 0.740±0.009 0.785±0.013

1 DiSK 0.550±0.009 0.800±0.002 0.907±0.003 0.842±0.002 0.736±0.001 0.742±0.006 0.763±0.016

2 TDDPM 0.550±0.010 0.795±0.001 0.906±0.003 0.836±0.002 0.737±0.001 0.755±0.006 0.740±0.020

3 SMOTE 0.549±0.005 0.791±0.002 0.891±0.003 0.840±0.001 0.732±0.001 0.743±0.005 0.683±0.037

4 CTAB-GAN+ 0.467±0.004 0.772±0.003 0.884±0.005 0.525±0.004 0.733±0.001 0.702±0.012 0.734±0.020

5 CTAB-GAN – 0.783±0.002 0.855±0.005 – 0.717±0.001 0.688±0.006 0.731±0.022

6 TVAE 0.433±0.008 0.781±0.002 0.864±0.005 0.752±0.001 0.717±0.001 0.732±0.006 0.714±0.039

FB-C (R2) GEST (F1) HIGG (F1) HOUS (R2) INSU (R2) KING (R2) MINI (F1) WILT (F1)

0 0.837±0.001 0.636±0.007 0.724±0.001 0.662±0.003 0.814±0.001 0.907±0.002 0.934±0.000 0.898±0.006

1 0.687±0.004 0.605±0.008 0.721±0.001 0.624±0.005 0.820±0.003 0.876±0.006 0.926±0.001 0.892±0.007

2 0.713±0.002 0.597±0.006 0.722±0.001 0.677±0.010 0.809±0.002 0.833±0.014 0.936±0.001 0.904±0.009

3 0.803±0.002 0.658±0.007 0.722±0.001 0.662±0.004 0.812±0.002 0.842±0.004 0.932±0.001 0.913±0.007

4 0.509±0.011 0.406±0.009 0.664±0.002 0.504±0.005 0.797±0.005 0.444±0.014 0.892±0.002 0.798±0.021

5 – 0.392±0.006 0.575±0.004 – – – 0.889±0.002 0.906±0.019

6 0.685±0.003 0.434±0.006 0.638±0.003 0.493±0.006 0.784±0.010 0.824±0.003 0.912±0.001 0.501±0.012

6



Generative Modeling for Tabular Data We evaluate the quality of DiSK generated samples via
the performance of a downstream model trained on the synthetic data. Following Kotelnikov et al.
(2023), we trained and tuned a Gradient-Boosted Decision Tree (GBDT) to perform the downstream
task, which can be either regression (evaluated with R2) or classification (evaluated with F1 score).
Across 15 datasets, detailed in Appendix D, we generate 5 synthetic samples and train 10 GBDTs
with different seeds. Then we evaluate the performance on a held-out test set from the original data.
We compare performance against various generative models specializing in structured tabular data
such as TDDPM (Kotelnikov et al., 2023), CTAB-GAN (Zhao et al., 2021), TVAE (Xu et al., 2019)
as well as an interpolation technique, SMOTE (Chawla et al., 2002), as a sanity check. Evaluation
metrics as well as pre-processing are taken from Kotelnikov et al. (2023). In a majority of cases,
DiSK offers favorable performance, as shown in Table 1, but falls somewhat short on, notably, the
largest dataset here: FB-Comments.

Nuclear Physics Predictions Many scientific applications lack large-scale data due to the diffi-
culty of taking measurements, the rarity of the events measured, or the prohibitive cost of obtaining
more data. We will explore the benefits of using a generative model to learn from limited data.
Nuclear properties are a good example, and developing accurate models for them can have a large
impact on many subfields of physics, such as nuclear (astro)physics, including r-process nucleosyn-
thesis Burbidge et al. (1957), the nuclear neutron skin and its consequences for the structure of
neutron stars Brown (2000); Horowitz & Piekarewicz (2001); Gandolfi et al. (2012), the exploration
of the boundaries of the nuclear landscape Erler et al. (2012), etc.

Table 2: Performance on the Nuclear Physics dataset.
RMS values for numerical values above the line and er-
rors for categorical features below. Properties without a
unit specification have no units. Volume, Surface, Sym-
metry and Coulomb are unitless quantities related to pro-
ton and neutron numbers. The Optimal Constant Base-
line uses the mode for categorical and mean for numerical
properties.

Field DiSK TDDPM Optimal
Const.

GBDT
Baseline

Eb [keV] 370±40 1700±70 5570 640±40

Radius [fm] 0.011±0.001 0.445±0.008 0.717 0.169±0.009

t1/2 [logsec] 1.51±0.01 2.63±0.02 3.63 1.72±0.09

Spin 1.2±0.1 1.78±0.02 1.74 1.02±0.01

Abundance 10.8±0.1 13.7±0.1 14.8 10±1

Qα [keV] 360±50 1330±30 6592 1290±40

Qβ− [keV] 310±20 2350±80 7781 1790±80

Qβ−+n [keV] 440±80 2800±200 10558 2300±100

QEC [keV] 520±40 2340±80 7643 1900±100

β2 [barns] 0.93±0.02 1.26±0.02 1.36 0.43±0.02

Volume 0.8±0.1 3±1 66.49 0.88±0.05

Surface 0.21±0.02 0.5±0.1 8.763 0.127±0.007

Symmetry 0.218±0.002 0.28±0.04 4.137 0.35±0.02

Coulomb 5.3±0.6 6±1 482.8 11±0.6

Stability 0.01±0.001 0.088±0.005 0.076 0.004±0.001

Parity 0.047±0.003 0.36±0.01 0.68 0.077±0.007

Here we tackle the property comple-
tion task on a nuclear physics dataset
comprising 3254 nuclei. The features
that we predict here are categorical and
numerical in nature, detailed in Ap-
pendix E. An important property of this
dataset is that it has many missing fea-
tures and can be a testbed for how well
our model handles sparse data.

To our knowledge, no single model pre-
dicts the diverse physical properties we
consider. However, specialized bind-
ing energy models provide reasonable
baselines, with errors from 140 keV to
several MeV using hand-engineered in-
puts and considerable domain knowl-
edge (Gao et al., 2021; Wang et al.,
2014; Zeng et al., 2022; Wang et al.,
2019; Wu et al., 2022).

We also include a TDDPM baseline
from Kotelnikov et al. (2023), which
is specifically designed for tabular data
and handles only categorical and numer-
ical features, omitting text. Models are
evaluated using 5 random initialization
seeds, with additional training details
provided in Appendix E.1. As shown in
Table 2, DiSK demonstrates favorable performance on most properties. In contrast, TDDPM strug-
gles to handle missing data naturally, resulting in performance that is often only marginally better
than a constant baseline for some properties. DiSK’s native ability to handle sparse data and missing
values can largely explain the observed performance gap. Notably, a single DiSK model can even
outperform multiple Gradient Boosted Decision Trees (GBDTs), a strong regression baseline where
a separate model is trained for each property.

Finally, the probabilistic predictions enable reporting modeling uncertainties, which is critical for
physics. We can use the denoising model to estimate various joint and conditional probabilities.
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Figure 10 in the appendix shows example binding energy uncertainty estimates via a likelihood
estimation.

The GSMArena dataset In the following experiment on the Kaggle GSMArena dataset, we aim
to motivate our diffusion loss further. For a dataset with text and a hierarchy, serializing the data
into an LLM for property prediction can present a strong baseline with some data augmentation. We
compare against LLaMa2-7B and find that integrating our “any-to-any” property prediction loss in
DiSK outperforms this strong left-to-right AR LLM. This is inline with much prior work on token
ordering limitations of information storage in left-to-right autoregressive langauge models (Allen-
Zhu & Li, 2023; Berglund et al., 2023; Lv et al., 2023).

We perform the experiment using both a fine-tuned LLaMA2-7B model (Touvron et al., 2023b) and
a small decoder-only model trained from scratch. In particular, it is evident that at a lower parameter
count, the structured inductive bias provides gains over the unstructured baseline at much larger
scales. Furthermore, we show that we get favorable performance compared to GBDTs, which offer
state-of-the-art performance on tabular data. The GBDTs are trained to predict a single property
based on all others, offering a strong baseline. Unlike DiSK, GBDTs do not handle missing data
naturally, which can explain the performance gap (see Appendix F for more training details).

Table 3: Comparison of causal decoder-transformer and struc-
tured generative modeling for property prediction. Numerical
properties (above line) use RMS error. Categoricals (below line)
use error rate (1 - accuracy). “model” is a text field and uses
word-based intersection over union (IoU) since tokenizers dif-
fer. To ensure that smaller values are better for all fields, we use
1 - IoU for text. Parsing error rate measures invalid JSON string
predictions.

Field DiSK Decoder
no pretrain

LLaMA2-
7B

LLaMA2-
7B zero-
shot

GBDT
Base-
line

weight 20.8±0.5 71.9 24.2 62.4 25±1

height 5.7±0.2 79.6 6.4 94.4 6.2±0.2

depth 1.67±0.05 3.90 1.82 7.11 1.65±0.04

width 3.5±0.3 42.7 4.110 69.6 3.8±0.2

display-size 0.64±0.02 7.47 0.707 10.5 1.08±0.05

battery 0.233±0.008 6.99 0.257 969 0.304±0.007

launch.day 11±1 30.9 11.27 15.0 8.7±0.2

launch.month 3.4±0.02 4.79 5.11 66.7 3.281±0.005

launch.year 1.25±0.06 947 1.22 458 1.42±0.02

oem 0.181±0.005 0.484 0.231 0.711 0.4±0.02

network-edge 0.221±0.005 0.371 0.217 1.000 0.75±0.01

model 0.881±0.004 0.900 0.878 0.928 –

parsing err. rate 0% 3.6% 3.9% 17.0% 0%
num. params 24.8M 30.7M 7B 7B –

All models use a 80-20 train-
test split. The decoder-only
architectures (pre-trained and
randomly initialized) use next-
token prediction. LLaMA inputs
are JSON-formatted string
representations, with properties
(key-value pairs) permuted 10
times before tokenization to
augment the training set. With-
out this augmentation, causal
models achieve worse perfor-
mance because of difficulties
in knowledge manipulation
(Zhu & Li, 2023). To evalu-
ate predictions on a particular
property, we prompt the model
with all other property keys and
values followed by the key of
the property we aim to predict.
The model must output the
property value and a closing
brace to form valid JSON. See
additional details in Appendix
F.1. Note that this evaluation
heavily favors the autoregressive
models. These choices aim to
present a challenging “best effort” scenario, establishing a difficult benchmark to surpass. DiSK
is capable of making predictions using a much smaller number of properties. Figure 11 shows the
metrics as a function of the proportion of properties given.

The unstructured decoder-only models demonstrate impressive prediction capabilities, especially
LLaMA, though pretraining may enable data leakage (we provide a zero-shot LLaMA experiment
to gauge this effect). However, they lack critical inductive biases for structured data like the ordi-
nality of numerical properties. In contrast, DiSK is designed with these inductive biases in mind,
leading to improved performance across metrics, as Table 3 shows. This highlights the importance
of embedding structure-aware inductive biases, even at massive scale. While decoder-only models
can memorize statistical regularities, their lack of inherent constraints results in large errors with-
out augmentation. They can also struggle to output valid, parseable entities. DiSK’s structured
formulation prevents these issues by design.

8



5 Related work

Recent works explore and improve reasoning capabilities of LLMs over structured data by serializ-
ing the data Lu et al. (2023), Jiang et al. (2023). These have the advantage that they can readily be
used with large pretrained language models. The drawback is that serializations are needed to in-
teract with the data, which opens up the potential for erroneous parsing and suboptimal exploitation
of the structure. Building on top of masked language modeling, much recent work has gone into a
variety of pre-training objectives including span-based and hybrid objectives (Joshi et al., 2020; Tay
et al., 2022; Chowdhery et al., 2022).

Prior work focuses on generative modeling of tabular data (Kotelnikov et al., 2023; Lee et al., 2023;
Xu et al., 2019) shares several characteristics with generative modeling of structured entities, insofar
as a row in the tabular data can be considered as an entity and the corresponding heterogeneous
column values as its set of properties. However, in structured entities, a property may also be
composed of other datatypes—e.g., a quantity is a composite of a numerical value and a unit of
measurement (categorical type), and a date may be represented as a composite of three numerical
values, i.e., day, month, and year—which implies a richer hierarchical structure compared to a row
in a typical tabular dataset.

Knowledge Base (KB) modeling, another relevant line of work, is often framed as a link prediction
problem. In this formulation, the knowledge base is represented as a collection of factual triples
(head, relation, tail) (Bordes et al., 2013; Lin et al., 2015; Sun et al., 2018; Schlichtkrull et al.,
2018; Nathani et al., 2019). This often necessitates a high-quality subset of triples, and conventional
models may struggle to generalize to generating facts with entirely new entity tails. In this work,
we take a more direct approach and model the knowledge base as a collection of entities, framing
knowledge modeling as a masked property prediction task over incomplete entity representations.

6 Discussion and future work

In this work, we propose DiSK, an architecture and a training paradigm to model structured data. We
show applications of our approach to modeling entities with heterogeneous data types and achieve
state-of-the-art generative and predictive quality in most settings. Notably, we show good results
generating synthetic, heterogeneous tabular data and numerical predictions. This requires good
handling of numerical values which we achieve through our tokenization-free handling via GMMs.
The probabilistic nature of the model and its high-precision predictions for numerical types make it
suitable for a range of tasks. A strong appeal is that DiSK both produces and operates on explicitly
human-interpretable structured data. This means that the learnt knowledge in this setting is amenable
to both human inspection and curation.

This architecture and the corresponding training approach present a step towards our broader re-
search vision of enabling better reasoning and knowledge manipulation. From our experiments with
LLaMA, it is evident that LMs can fall short when used as knowledge stores, underscoring the
need for an approach which offers a more effective method for reasoning about structured entities
in knowledge bases. Integrating DiSK with language models promises improvements in such tasks,
but requires exploration especially in leveraging relationships within knowledge graphs for better
generalization (see Appendix G for limitations).

Future work may explore other applications of our proposed approach—such as structured entity
extraction (Wu et al., 2024) and KB-augmented LLMs—that requires combination of DiSK and
LLMs. Unlike KB completion, for structured entity extraction DiSK would need to predict the
entity properties based on LLM’s latent representation of text, rather than unmasked properties. For
KB-augmented text generation tasks, such as question-answering, it is the LLM that may attend over
the latent representations of entities and properties from DiSK. The ability to employ the same DiSK
model to these varied tasks opens up the opportunity to explore large-scale multitask pre-training of
DiSK, a potential stepping stone towards foundation models of structured entities and KBs. While
large-scale KBs with structured entities are already available for pre-training, the ability to extract
more structured information from text (and other modalities) creates a virtuous cycle by producing
more data that may be employed for the training of DiSK.
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A Diffusion Loss

A.1 Forward Process

Consider the forward process q(xt|xt−1) from p(x0), the data distribution, towards an easy-to-
sample reference distribution q(x) with all dimensions (properties) in the masked state. We apply a
continuous-time diffusion to dimension d of x0 with a transition rate matrix

Rdt =

[
0 0 0

−β(t) β(t) 0
−β(t) 0 β(t)

]
,

where, for illustration purposes, we used a discrete distribution with 3 states and reserved the state 0
for the mask state. Each state flows into the absorbing mask state with the same rate β(t). Solving
Kolmogorov’s equations, reveals the marginal distribution for the state at time t conditioned on the
initial state is given by xT0 Pt (using a slight abuse of notation to handle all dimensions simultane-
ously) where

P dt = exp

∫ t

0

Rdsds =

 1 0 0
1− e−γ(t) e−γ(t) 0
1− e−γ(t) 0 e−γ(t)

 , (3)

with γ(t) =
∫ t
0
β(s)ds. At time t, property d jumps into a masking state with probability 1−e−γ(t),

while masked properties remain absorbed. We set β(t) such that at time t = 1, all properties are
masked (i.e., γ(1) = ∞). The specific β(t) is irrelevant as we can integrate across the masking
probability instead of time, similar to integrating across the signal-to-noise ratio (SNR) in Kingma
et al. (2021) for Gaussian diffusion models. Though the forward process is independent for each
dimension, it is useful to denote the joint rate over properties

Rt(x, x̃) =

D∑
d=1

δ(x¬d, x̃¬d)Rdt (x
d, x̃d), (4)

where ¬d indexes is a vector of all properties from 1 to D except property d. Here, the Kronecker
delta δ is used to specify that there is no change from one vector to another unless exactly one
property, d, changes, in which case the rate is given by the rate matrix for that property. The total
rate of change across all properties is then given by

Zt(x) =
∑
x̸=x̃

Rt(x, x̃) = β(t)(D −Nt), (5)

where Nt is the number of masked properties at time t. It is also useful to write the probability
of transitioning from state x to x̃ at time t as rt(x̃|x) = (1 − δ(x, x̃))Rt(x, x̃)/Zt(x). We can
also define the empirical masking rate π̂ = Nt/D. These expressions will be useful in deriving the
likelihood bound in Proposition 1. We will do that below.

A.2 A simple simulation of the reverse process

The general form of the reverse process is as follows

R̂t(x, x̃) =

D∑
d=1

δ(x¬d, x̃¬d)R̂dt (x, x̃
d), (6)

where

R̂dt (x, x̃
d) = Rdt (x̃

d, xd)
∑
xd
0

pθ0|t(x
d
0|x¬d)

qt|0(x̃
d|xd0)

qt|0(xd|xd0)
(7)

The term R̂dt (x, x̃
d) denotes the rate of events in the d-th dimension given the current state. Note

that if the forward rate from x̃d to xdis zero, then the reverse rate from xd to x̃d will also be zero.
For our setup, events can only occur out of the masking state in the reverse process, and all of the
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other states are now absorbing. Substituting the above equations for the rate and marginals of the
absorbing process, we have

R̂dt
(
x, x̃d

)
=



0, xd ̸= 0

β(t)
e−γ(t)

1− e−γ(t)
pθ0|t

(
x̃d | x

)
, xd = 0, x̃d ̸= 0

−β(t) e−γ(t)

1− e−γ(t)
, xd = x̃d = 0.

(8)

A.3 Likelihood Bound

The choice of an absorbing state kernel enables a simplified expression for the loss function with
which the network can be trained. The general form of the ELBO (up to a constant) given by
Campbell et al. (2022) is

LCT = Et∼U(0,1),qt(x),rt(x̃|x)

∑
x′ ̸=x

R̂t (x,x
′)

− Zt (x) log R̂ (x̃,x)

 . (9)

The absorbing state setup enables two simplifications to this bound. First, we substitute in the form
of Zt and R̂t to obtain

LCT = Et∼U(0,1),qt(x),rt(x̃|x)

[{
Ntβ(t)

e−γ(t)

1− e−γ(t)

}
− (β(t)(Nt −D)) log R̂ (x̃,x)

]
. (10)

This substitution has made the first term inside the expectation independent of the state and so omits
the need for an additional pass of the neural network. Although Campbell et al. (2022) proposed
to use a single pass of the neural net to give a good approximation of the bound, this formulation
alleviates the need for that approximation.

Consider now the simulation of qt(x)rt(x̃|x). Like Campbell et al. (2022) we simulate from the
marginal of x̃ and analytically marginalize the state x. Since we know that in the forward process,
all events occur at different times and that each event consists of flipping one property into the mask
state (at the same rate across properties), simulating from the marginal ψ(x̃) =

∑
x qt(x)rt(x̃|x)

can be done by first masking out each property independently with probability 1 − exp(−γ(t)),
and then masking out one additional property at random. In the case where all properties become
masked by chance, we ignore this sample because Zt = 0.

Having sampled from this marginal, consider the conditional state distribution qt(x|x̃) the state x
must have exactly one less mask than the state x̃, uniformly at random. So analytically marginalizing
this state leads to:

LCT = Et∼U(0,1),ψ(x̃),qt(x|x̃)

[{
Ntβ(t)

e−γ(t)

1− e−γ(t)

}
− (β(t)(Nt −D)) log R̂ (x̃,x)

]
(11)

= Et∼U(0,1),ψ(x̃)

{Ntβ(t) e−γ(t)

1− e−γ(t)

}
− β(t)(Nt −D)

Nt + 1

∑
d|x̃d=0

log R̂
(
x̃, xd

) . (12)

Note that sample x̃ has Nt + 1 masked dimensions. We can now make our final substitution using
equation 8 to get

LCT = Et∼U(0,1),ψ(x̃)

{Ntβ(t) e−γ(t)

1− e−γ(t)

}
− β(t)(Nt −D)

Nt + 1

∑
d|x̃d=0

log β(t)
e−γ(t)

1− e−γ(t)
pθ0|t

(
x̃d | x

) .
(13)

Dropping terms that do not depend on neural network parameters we obtain

LCT = Et∼U(0,1),ψ(x̃)

−β(t)(Nt −D)

Nt + 1

∑
d|x̃d=0

log pθ0|t
(
x̃d | x

)
+ const

 . (14)
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Finally, we can change the variable of integration from t to the probability of flipping a property in
to the mask state. Writing π(t) = 1− exp(−γ(t)), we have

dπ

dt
=
dγ

dt
e−γ(t) = β(t)(1− π(t)), (15)

and so the objective becomes

LCT = Eπ∼U(0,1),ψ(x̃)

1− π̂

1− π

D

Nt + 1

∑
d|x̃d=0

log pθ0|t
(
x̃d | x

)
+ const

 , (16)

where we use π̂ = Nt/D as the empirical masking rate. Thus, we state

Proposition 1 (formal, see Proposition 1 for informal version) For the reverse diffusion from the
fully masked stationary distribution towards p(x0), an upper bound on the model negative log-
likelihood Ep(x)[− log pθ0(x)] can be given by

LCT = Eπ∼U(0,1), x̃∼ψ(x̃)

C(π) ∑
d|x̃d=0

− log pθ0|t
(
xd0 | x̃

) , (17)

where ψ(x̃) =
∑

x qt(x)rt(x̃|x) and C(π) = 1−π̂
1−π

D
Nt+1 .

This final simplification of the objective reveals a close connection to self-supervised learning: we
have the standard reconstruction loss for randomly masked elements in x0, but with a random
amount of masking. The factor (1 − π̂)/(1 − π) is the ratio of non-masked elements to the ex-
pected non-masked elements, so will downweight gradients where the amount of information is less
than expected i.e., if by chance, more masked are flipped than π would imply, then the sample is
down-weighted.

B Ablations

B.1 Autoregressive Diffusion vs. Masked modeling

B.1.1 Quantititave Examples

Here, we show how our prescription for generating samples from our autoregressive diffusion pro-
cess compares against simple masked modeling where all masked properties are predicted simul-
taneously. We show a few qualitative examples, including visually inspecting generated MNIST
samples (Appendix B.1.2). In this section, we will make this intuition more quantitative by using
our tabular datasets testbed.

We use the same model trained with a random masking rate to generate samples using each ap-
proach on each dataset. Then we compare the performance of a downstream model trained on these
synthetic samples. The results are shown in Table 4. Unsurprisingly, diffusion-based sampling
outperforms masked modeling in all cases. We conjecture the wide variance across tasks in the
non-diffusion case to the importance of correlations across features in each dataset. Indeed, if the
properties are completely independent, it suffices to sample from the marginals, of which the non-
autoregressive model is perfectly capable. However, if there are strong correlations, sampling from
the marginals can lead to completely smoothed-out samples, which results in performance no better
than a constant baseline.

B.1.2 Qualitative examples

For a more visual representation of our generative model we train a simple U-Net to generate MNIST
images starting from a blank image (fully masked) using an implementation of the reverse process
from Appendix A.2. Here we show a few examples conditioned on the digit label.

Binary MNIST images are generated by treating pixels as binary categorical variables and diffusing
through pixel space one at a time. As Figure 5 illustrates, diffusion generates coherent sample digits
emerging through gradual reveals. In contrast, (non-autoregressive) masked modeling exposes all
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Method ABAL (R2) ADUL (F1) BUDD (F1) CALI (R2) CARD (F1) CHUR (F1) DIAB (F1)

0 Real 0.556±0.004 0.815±0.002 0.906±0.002 0.857±0.001 0.738±0.001 0.740±0.009 0.785±0.013

1 DiSK 0.550±0.009 0.800±0.002 0.907±0.003 0.842±0.002 0.736±0.001 0.742±0.006 0.763±0.016

2 Single-step
DiSK

0.027±0.041 0.776±0.006 – 0.001±0.003 0.730±0.001 0.711±0.005 0.730±0.021

FB-C (R2) GEST (F1) HIGG (F1) HOUS (R2) INSU (R2) KING (R2) MINI (F1) WILT (F1)

0 0.837±0.001 0.636±0.007 0.724±0.001 0.662±0.003 0.814±0.001 0.907±0.002 0.934±0.000 0.898±0.006

1 0.687±0.004 0.605±0.008 0.721±0.001 0.624±0.005 0.820±0.003 0.876±0.006 0.926±0.001 0.892±0.007

2 0.095±0.025 0.434±0.009 – 0.002±0.006 −0.002±0.013 0.071±0.050 0.834±0.002 0.562±0.031

Table 4: Ablating our autoregressive diffusion (Row 1) against simple masked modeling (Row 2)
where all properties are predicted simultaneously.

Figure 5: Class-conditioned MNIST samples utilizing (top) a pixel-by-pixel discrete diffusion, or
(bottom) unveiling the entire image simultaneously through masked modeling.

pixels at once, lacking the proper correlations, evident by the noisy samples. While autoregressive
benefits are well-established, this visualization demonstrates that diffusion more accurately captures
relationships during entity generation than simple masked modeling.

Another qualitative example of samples from a DiSK model trained on the GSMArena dataset (see
Section 3) highlighting the benefits of this approach in capturing multimodality is shown in Figure 6.

Diffusion Generated
{“Manufacturer”  : Asus,
“Model Name”   : Zenfone 2 Laser}

Diffusion Generated
{“Manufacturer”  : Motorola,
“Model Name”   : Moto X Play}

Masked Modeling Generated
{“Manufacturer”  : Motorola,
“Model Name”   : Zenfone 2 Laser}

Figure 6: Diffusion samples from DiSK yield consistent model names and manufacturers, while
masked modeling mismatches manufacturers and names by only capturing marginals.

B.2 Ablations for prediction quality on GSM

In this section we run several ablations on different model choices, training on the GSMArena
dataset and evaluating with respect to RMS, accuracy and word IOU (compare with Table 3). Overall
we find that the models performance is quite stable with respect to the changes we introduce. We
include experiments for two different hidden dimensions, two different learning rates, periodic and
DICE embeddings, number of GMM mixtures and whether or not numerical embeddings are shared
across properties. Table 5 provides the data on all the experiments we ran for this section. We break
up interesting aspects into smaller tables 6-8 for better overview. The performance for each setting is
averaged over 5 model initialization seeds. In the smaller tables, we highlight the best performance
for each property, solely by performance average value, even if multiple models are best within the
statistical uncertainty.

Numerical Embeddings The first ablation pertains to the treatment of numerical values on the
encoder side. Two options are provided for the way in which we embed numerical values, via DICE
(Sundararaman et al., 2020) and via periodic embeddings (Vaswani et al., 2017). Additionally, we
look at whether tying the embeddings or all nuclear properties has an effect on performance. We
keep other hyperparameters fixed: Notably we run with a model dimension of 512, 50 GMM mix-
tures for each numerical property, a learning rate of 0.001 and a random mask rate during training.
The results are shown in Table 6. They are overall comparable, differences in performance for any
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field are within one standard deviation. Interestingly, the uncertainty over different initializations
seems generally smaller when numerical embeddings are tied.

GMM vs MSE In this ablation we vary treatment of numerical properties on the output side. In
Figure 3 we illustrate the benefit of using GMMs as opposed to a simple MSE regression, specif-
ically for generation quality. Here, we investigate this choice with respect to prediction quality
Experiments are shown in Table 7. The results align with our expectation of similar performance.
The reason for this is that in a regression task, we predict the value value as the weighted sum of the
mean values of all mixtures, which should attain similar performance as fitting only one Gaussian
and predicting its mean.

Masking rate During training of a DiSK model, properties are masked out at random. In the
scheme derived in Section 2.2 and Appendix A, the rate at which properties are masked is also
chosen uniformly at random from 0 to 1. Here, we explore how prediction quality changes when
training with a fixed masking rate of 0.5 instead. The results can be seen in Table 8. Interestingly,
we seem to find a small but fairly consistent difference in performance. Except for the text field
“model”, in which the performance is significantly better, the other predictions are slightly worse
when training with the constant masking rate. In future work, we will explore this apparent trade-off
further and hope to find how and where the model treats text fields differently than categorical and
numerical fields.
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Table 5: Ablations over embedding types, mask rates number of mixtures in the GMMs and tied
numerical embeddings.
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num. emb. type DICE Periodic Embedding
num. emb. tied No Yes No Yes

weight 20.788±0.529 20.634±0.480 22.193±0.910 21.181±0.663

height 5.648±0.185 5.532±0.080 5.677±0.155 5.618±0.063

depth 1.673±0.045 1.689±0.036 1.712±0.022 1.673±0.030

width 3.485±0.347 3.277±0.063 3.885±0.461 3.552±0.134

display-size 0.637±0.016 0.627±0.016 0.665±0.023 0.633±0.031

battery 0.233±0.008 0.243±0.009 0.240±0.008 0.237±0.006

launch.day 10.910±0.987 11.283±0.176 11.054±0.529 11.664±0.117

launch.month 3.351±0.025 3.410±0.114 3.317±0.023 3.375±0.031

launch.year 1.252±0.057 1.268±0.039 1.316±0.039 1.273±0.032

oem 0.181±0.005 0.178±0.005 0.187±0.008 0.182±0.002

network-edge 0.230±0.005 0.224±0.008 0.230±0.006 0.228±0.010

model 0.881±0.004 0.880±0.004 0.882±0.003 0.883±0.002

Table 6: Property prediction performance of the DiSK on the GSM dataset, with two different nu-
merical embeddings, either tied or untied. In the tied case, the numerical embeddings are shared
between all numerical properties. Runs are averaged over 5 model initialization seeds. Other hyper-
parameters are fixed.

num. emb. type DICE Periodic Embedding
# GMM mixtures 1 50 1 50

weight 23.039±0.565 20.788±0.529 23.161±1.593 22.193±0.910

height 5.640±0.220 5.648±0.185 5.884±0.209 5.677±0.155

depth 1.686±0.031 1.673±0.045 1.740±0.044 1.712±0.022

width 3.806±0.475 3.485±0.347 3.916±0.318 3.885±0.461

display-size 0.631±0.011 0.637±0.016 0.655±0.029 0.665±0.023

battery 0.252±0.012 0.233±0.008 0.256±0.028 0.240±0.008

launch.day 11.198±0.273 10.910±0.987 11.209±0.713 11.054±0.529

launch.month 3.610±0.037 3.351±0.025 3.637±0.056 3.317±0.023

launch.year 1.260±0.067 1.252±0.057 1.277±0.066 1.316±0.039

oem 0.175±0.002 0.181±0.005 0.186±0.003 0.187±0.008

network-edge 0.222±0.006 0.230±0.005 0.225±0.008 0.230±0.006

model 0.880±0.002 0.881±0.004 0.883±0.001 0.882±0.003

Table 7: Prediction performance on GSM with either 1 or 50 GMM mixtures per numerical property.
When the number of GMM mixtures is 1, the task reduces to regression via MSE.

num. emb. tied No Yes
mask rate (training) Random 0.5 Random 0.5

weight 20.788±0.529 22.611±1.280 20.634±0.480 23.092±0.989

height 5.648±0.185 5.827±0.090 5.532±0.080 5.894±0.147

depth 1.673±0.045 1.927±0.032 1.689±0.036 1.934±0.046

width 3.485±0.347 3.594±0.254 3.277±0.063 3.577±0.456

display-size 0.637±0.016 0.660±0.024 0.627±0.016 0.685±0.016

battery 0.233±0.008 0.247±0.013 0.243±0.009 0.241±0.007

launch.day 10.910±0.987 11.122±0.533 11.283±0.176 11.256±0.345

launch.month 3.351±0.025 3.370±0.014 3.410±0.114 3.358±0.025

launch.year 1.252±0.057 1.396±0.032 1.268±0.039 1.443±0.064

oem 0.181±0.005 0.186±0.003 0.178±0.005 0.182±0.003

network-edge 0.230±0.005 0.237±0.007 0.224±0.008 0.232±0.009

model 0.881±0.004 0.862±0.004 0.880±0.004 0.861±0.002

Table 8: Prediction performance on GSM ablated over the mask rate during training. Properties
are always masked out randomly, but the probability can be chosen. “Random” means a uniformly
random mask rate, newly drawn for each batch. Note that the rate applies only in training.
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C Architecture and Training Details

Encoders and decoders in the model largely have the same structure, which relies on residual blocks
made of a standard 4× hidden layer, a GLU activation, and a post-activation LayerNorm. Parameters
are initialized following the Maximal Update Parameterization (Yang et al., 2022). Categorical
decoders have the same number of outputs as classes. Numerical decoders, on the other hand, predict
GMM parameters, which add up to a total of 3×Num. Mixtures which is usually a hyperparameter
we tune on a validation set. We use the default implementation of the transformer encoder in PyTorch
for the entity encoder and the text encoder. Simularly, we use the default transformer decoder
for the text decoder. For the text encoder, we use the last layer outputs at the first token as the
encoding of the text property. Code for the model architecture, as well as experiments, is available
at [github REDACTED].

Preprocessing (for GSMArena and AME2020) includes min-max rescaling for numerical and one-
hot encoding for categorical properties. However, we did experiment with semantically encoding
the labels of categorical properties using the same tokenization and embeddings from the language
modeling component. This yielded interesting results with “semantically meaningful” errors. For
instance, if the model never sees a label in the training data, it often predicts a label with a large
string intersection with the truth labels. We also experimented with both DICE and trainable periodic
embeddings but found no significant difference. Results are reported using periodic embeddings.

We use a cosine annealing schedule for all of our runs. All runs were performed on a handful of
V100 GPUs.

iPhone TextName

180

mask Num.Weight. 
value g Cat.Weight. 

unit

× N

⊕

Encoder

Decoder
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Value

Basic TypeHierarchical 
Encoding

Transformer 
Layer

Key

Figure 7: DiSK architecture on the left and key for the diagram on the right. In this example, the
model is tasked to predict the masked value for the weight.value property.

The hierarchical encodings are generated by traversing the hierarchy to reach the node for which
we would like to compute the prediction (see Figure 8). In our case, we use an RNN to process
the sequence and read off the encoding from the hidden representation of the last element in the
sequence.

D Tabular Datasets Details

Experimental setup We use the same experimental setup as Kotelnikov et al. (2023), including
the preprocessing and the CatBoost hyperparameters tuned on the validation set of each dataset.
For DiSK, we run a hyperparameter search on learning rate, width, depth, and number of GMM
parameters over 100 iterations to optimize the CatBoost performance on the validation set. Finally,
we evaluate the test set from the real data after training 10 CatBoost models on 5 realizations of data
generated by DiSK, totaling 50 runs. Table 1 reports the mean and the standard deviation. For the
other methods, we re-use the hyperparameters reported by Kotelnikov et al. (2023) and found by
tuning each model in a similar fashion.
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Figure 8: Example phone entity with leaf nodes that have one of the following basic types numer-
ical, categorical, or text. Composite properties are made of other composite types or leaf nodes.
Positional encodings are generated at each node using a sequence model over the path that connects
it to the root. Encoded values at each node are attended to using the entity encoder

Baselines Our main baseline here is TDDPM, which is also a diffusion model, though it uses very
different assumptions (for instance, a uniform kernel instead of one with an absorbing state). These
discrepancies and the differences in architecture enable our approach to be better suited to handling
numerical quantities, hierarchical and sparse data, and missing values. We also compare against
other generative models: TVAE, a tabular variation auto-encoder-based generative model, CTAB-
GAN and its upgrade CTAB-GAN+ based on a generative adversarial backbone. Finally, SMOTE
is an interpolation method originally proposed for minority oversampling but is used in Kotelnikov
et al. (2023) as a sanity-check baseline.

Datasets Table 9 contains the complete list of the datasets used in this experiment.

Table 9: Dataset description for the experiments on tabular data.
Code Name Train size Val. size Test size Num. feat. Cat. feat. Task
ABAL Abalone 2672 669 836 7 1 Regression
ADUL Adult 26048 6513 16281 6 8 Binclass
BUDD Buddy 12053 3014 3767 4 5 Multiclass
CALI California Housing 13209 3303 4128 8 0 Regression
CARD Cardio 44800 11200 14000 5 6 Binclass
CHUR Churn Modelling 6400 1600 2000 7 4 Binclass
DIAB Diabetes 491 123 154 8 0 Binclass
FB-C Facebook Comments Volume 157638 19722 19720 50 1 Regression
GEST Gesture Phase 6318 1580 1975 32 0 Multiclass
HIGG Higgs Small 62751 15688 19610 28 0 Binclass
HOUS House 16H 14581 3646 4557 16 0 Regression
INSU Insurance 856 214 268 3 3 Regression
KING King 13832 3458 4323 17 3 Regression
MINI MiniBooNE 83240 20811 26013 50 0 Binclass
WILT Wilt 3096 775 968 5 0 Binclass

E Details on nuclear data

The data is gathered from a live chart of nuclide properties in https://nds.iaea.org/
relnsd/vcharthtml/VChartHTML.html that is constantly updated. Our snapshot includes
all data up to August 2023. Sources for the data are listed in https://nds.iaea.org/
relnsd/vcharthtml/guide.html, subsection Sources. This dataset contains numerical and
categorical properties. Numerical properties comprise binding energy, charge radius, the logarithm
of the half-life, Spin configuration, abundance of the nucleus in nature, energies available for α, β,
β+n decays and electron capture (EC), various form factors. The categorical properties are the sta-
bility of the nucleus and its parity. We exclude proton/neutron separation energy to prevent binding
energy data leakage.

With consistent results across hyperparameter configurations, our chosen model for this task trains
for 50,000 epochs with a 0.001 learning rate, no weight decay, 0.1 dropout, and 1024 batch size. It
has two encoder/decoder layers per property and 50 GMM components per numerical feature.
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Figure 9: Model performance on a held-out set of the nuclear dataset as a function of masking
rate, measured by root mean square error (RMS, ↓) for numerical properties and accuracy (↑) for
categorical properties. The dashed baseline reflects always predicting the marginal mode/mean.
Error bars are one σ.
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Figure 10: (Left) Coverage of estimated binding energy from the nuclear dataset as a function of
maximum loglikelihood fraction contained within the interval. (Right) Full loglikelihood of the
binding energy of a validation sample along with the Maximum Likelihood Estimate (MLE) and the
−1/2 profile likelihood.

E.1 Training and Evaluation on Nuclear Data

Evaluating the precision of predictions of Tabular Denoising Diffusion Probabilistic Model (TD-
DPM) on the nuclear physics dataset requires conditioning on N, Z. Because this cannot be done
directly, we generate samples from the joint distribution which includes N and Z and post-hoc con-
dition on samples that are are close to the desired N and Z values (within 0.1 tolerance). We then
take the mean prediction of these samples and use it as a model prediction. We used the standard
architecture from Kotelnikov et al. (2023) with slightly different hyperparameters, which were tuned
with a validation set on a coarse grid.
As for the GBDT, we handle missing data by filling with the Optimal Constant solution i.e., if a (nu-
merical) categorical property is missing in a particluar sample we simply replace it with the (mean)
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mode of that property across the training set.
We chose the following hyperparameters for tuning by suggesting suitable values in each distribu-
tion:

1. learning rate: The learning rate determines the step size taken by the optimizer during
training. We used a log-uniform distribution between 0.001 and 1.0.

2. depth: The depth of the decision trees in the model. We chose an integer value between 3
and 10 for this parameter.

3. l2 leaf reg: The L2 regularization term applied to the objective function. We used a uniform
distribution between 0.1 and 10.0 for this parameter.

4. bagging temperature: The parameter controlling the intensity of the sampling process
for bagging during training. We used a uniform distribution between 0.0 and 1.0 for this
parameter.

5. leaf estimation iterations: The number of Newton-Raphson iterations for calculating leaf
weights. We chose an integer value between 1 and 10 for this parameter.

Additionally, we set some default values for other parameters:

• iterations: 2000

• early stopping rounds: 50

• od pval: 0.001

F Details on the GSM dataset
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Figure 11: DiSK performance on a held-out dataset as a function of unmasking rate, measured by
root mean square error (RMS, ↓) for numerical properties and accuracy (↑) for categorical properties.
The dashed baseline reflects always predicting the marginal mode/mean. Error bars are one σ.

The GSMArena dataset on phones comes from https://www.kaggle.com/datasets/
msainani/gsmarena-mobile-devices, comprises 10679 entries of phone entities, with
the following features: model name, OEM name, network edge, weight, display size, height, width,
depth, battery and launch date, which is a composite type of day, month and year. The data is split
into 80% train and 20% test data. A small number of entries shares both the manufacturer and model
name. In such cases, we move the duplicates from the testing set to the training set. This results in a
split of about 83% and 17%. The phone launch day entry is fairly sparse, only 5% are filled, but all
other values have at leat 85% coverage.

F.1 GSM Training for DiSK and Decoder-only

The custom tokenization for the from-scratch trained decoder defines each possible element in cat-
egorical fields as one token. Numerical values are represented as floats with two decimals and
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tokenization is done per digit. The string representation has special tokens for separation be-
tween items, key value separation and separation of hierarchical key. For example, a key like
phone.launch.day is tokenized as “T (phone), T (.), T (launch), T (.), T (day)”, T represent-
ing the token to integer mapping. The model is a 4-layer decoder-only transformer a model dim of
768, 2 heads per self-attention. It is trained with a batch size of 512, a learning rate of 0.0001, weight
decay of 0.0001 and no dropout. Those parameters were optimized by sweeping over a coarse grid.

The DiSK has one encoder and one decoder module with 2 layers each for every feature of the
data, a model dimension of 256, 2 heads in each attention, a 2-layer entity encoder and 50 GMM
components per feature. It was trained with a batch size of 1024, learning rate of 0.001, no weight
decay and a dropout of 0.1 over 20000 epochs. Those parameters were optimized in a similar way
as in the decoder procedure.

The Llama model was fine-tuned with LoRA Hu et al. (2022) and FSDP Zhao et al. (2023)
via the llama-recipes repository (https://github.com/facebookresearch/
llama-recipes) from Meta AI. Training runs for two epochs, after which the validation loss
saturates.

F.2 GSM Training for GBDTs

GBDTs offer state-of-the-art performance on tabular data but they do not handle missing data nat-
urally. To solve this issue, we fill in missing properties with their optimal constant solutions (mean
for continuous and mode for discrete). Furthermore, text properties are omitted because GBDTs
cannot handle them in a natural fashion. We tune the GBDT hyperparamters on a validation set in a
similar way to that of the nuclear physics dataset in Appendix E.1.

G Limitations

While our study demonstrates the efficacy of the DiSK model in structured generative modeling and
high-precision handling of numerical types along with various data types, several limitations and
future research directions emerge:

1. Scalability and Pre-training Challenges:

• Current Scope: The model’s current application is confined to datasets of a limited
scale.

• Future Aspirations: Aiming to scale the model to joint training on larger and more
varied datasets introduces significant challenges, especially in pre-training.

2. Integration with Language Models:

• Current Integration: The model has a strong capacity in handling structured data and
generating high-precision predictions but uses a small transformer to model text prop-
erties.

• Future Potential: Extending our approach to integrate with LLMs could enhance per-
formance on knowledge-intensive tasks and benchmarks.

3. Generalization within Knowledge Graphs:

• Current Methodology: The model treats static entities as independent units, not fully
leveraging relational dynamics within a knowledge graph.

• Future Exploration: Investigating how the model can achieve generalization within
the context of a knowledge graph.

4. Knowledge Representation in Foundation Models:

• Broader Implications: Current foundation models, including LLMs, store knowledge
in latent forms that are not human-interpretable or easily editable.

• Future Directions: Developing structured knowledge models to augment LLMs, aim-
ing for explicit, interpretable, and editable knowledge representation, remains an im-
portant challenge.
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H Impact Statement

Our model is designed to enhance the efficiency and effectiveness of structured data modelling.
While it brings the potential for improved decision-making in areas such as healthcare, finance and
social policy, we do not foresee any immediate negative impact beyond the typical considerations
associated with contemporary machine learning models.

I Compute Resources

We trained a total of about 2000 models for the research conducted in this paper. The vast majority
was run on one machine with Intel(R) Xeon(R) Gold 6230 CPUs and one NVidia V100 GPU. Fine-
tuning was run on the same machine, but utilizing 8 V100 GPUs. Model training took anywhere
between 5 minutes for some of the tabular data and a day for bigger datasets.
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