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We discuss one such factor: the extent and quality of
information science’'s responsibility to society: and conclude
that information science must become both theoretically self-
conscious and seli-consclously based upon a social ideology.
These conditions are necessary for: determining the possible
effects 9f'igformation science upon society; relating its theoret-
lcal activities to their social context; and deciding the conflicts
between ethical and politically expedient imperatives which are
bound to arise.
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3 FACT IR: Fairness, Accountability, Confidentiality and
Transparency in Information Retrieval

3.1 Description

IR is about connecting people to information. However, as with all software-based systems, IR
systems are not free of human influence; they embed the biases of those that create, maintain
and use them. Empirical evidence suggests that certain communities have differential access to
information; in other words, their needs might not be equally well supported or certain information
types or sources might be more or less retrievable or might not be well represented. In addition, as
we increasingly rely on the outcome of IR systems such as search engines, recommender systems,
and conversational agents for our decision making, there is a growing demand for these systems to
be explainable. Such problems are related to many fundamental aspects of information retrieval,
including information representation, information or answer reliability, information retrievability
and access, evaluation, and others. While, traditionally, the IR community has been focused on
building systems that support a variety of applications and needs; it is becoming imperative that
we focus as much on the human, social, and economic impact of these systems as we do on the
underlying algorithms and systems.

We argue that an IR system should be fair (e.g., a system should avoid discriminating across
people), accountable (e.g, a system should be reliable and be able to justify the actions it takes),
confidential (e.g., a system should not reveal secrets), and transparent (e.g., a system should
be able to explain why results are returned). Judgment is needed sometimes to balance these
four considerations (e.g., it is responsible to bias against unreliable sources). Other communities,

The purpose of the SIGIR 2019 workshop on Fairness, Accountability, Confidentiality, Trans-
parency, and Safety (FACTS-IR) was to explore challenges in responsible information re-
trieval system development and deployment. To this end, the workshop aimed to crowd-
source from the larger SIGIR community and draft an actionable research agenda on five
key dimensions of responsible information retrieval: fairness, accountability, confidentiality,
transparency, and safety. Such an agenda can guide others in the community that are in-
terested in pursuing FACTS-IR research, as well as inform potential funders about relevant
research avenues. The workshop brought together a diverse set of researchers and prac-
titioners interested in contributing to the development of a technical research agenda for
responsible information retrieval.



IR systems mediate what
Information gets exposure

Disparate exposure can
lead to allocative and
representational harms

This raises questions of
exposure fairness and
transparency in the context
of IR systems

Sweeney. Discrimination in online ad delivery. Commun. ACM. (2013)
Crawford. The Trouble with Bias. NeurlPS. (2017)
Singh and Joachims. Fairness of Exposure in Rankings. In KDD, ACM. (2018)

Exposure fairness and transparency

Online Ads for High-Paying Jobs Are

Targeting Men More Than Women

New study uncovers gender bias

'} d 1o latanya sweeney (L
Latanya Sweeney Truth
rww.instantcheckmate.com

w V.1nNs checkmale
Looking for Latanya Sweeney? Check Latanya Sweeney's Arrests
Ads by Google

Latanya Sweeney Arrested?
1) Enter Name and State. 2) Access Full Background

www_ publicrecords .comV

La Tanya
Search for La Tanya Loo
www.ask.com/La+Tanya

Figure 2: An image search result page for the query "CEO"

Screenshot of aGoogle ad showing a disproportionate number of male CEOs.



Formalizing search exposure using user
browsing models

User browsing models are simplified models

of how users inspect and interact with RBP NDCG
. ] ]
retrieved results — R
I [
It estimates the probability of inspecting a — —
[ [

particular item in a ranked list

Probability of exposure at different ranks according
to NDCG and RBP user browsing models

For example, consider the RBP user model...
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exposure event :r | T rank of the item in the ranked list

an item
patience
factor

a ranked list of items

Diaz, Mitra, Ekstrand, Biega, & Carterette. Evaluating Stochastic Rankings with Expected Exposure. In Proc. CIKM, 2020.
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Stochastic ranking and expected exposure metric

Stochastic ranking can distribute
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Exposure fairness is a multisided problem

It is important to ask not just whether specific content receives
exposure, but who it is exposed to and in what context

Haolun, Mitra, Ma, & Liu. Joint Multisided Exposure Fairness for Recommendation. In Proc. SIGIR, 2022.
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Exposure fairness is a multisided problem
Take the example of a job recommendation system

Individual-user-to-Individual-item (lI-F)

Are Individual items under/over-exposed to
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individual users?
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disproportionately under-exposed to all users.
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Group-aware search success
Towards fairness of quality of service

Different groups may search for different
queries and may have different
iInformation intents for the same query

Group-aware search success metrics
consider the probability that search
results satisfy all groups, not just success
on average

Expected exposure can be used to develop
group-aware search success metrics

Haolun, Mitra, & Craswell. Towards Group-aware Search Success. In Proc. ICTIR, 2024.
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Figure 1: Two motivation examples to show that previous
search success measures cannot distinguish certain nuances.
Each edge in the figure between the query (g) and intent (t)
carries equal weight, signifying that the query is uniformly
relevant to the connected intents. Similarly, the edges linking
the user group (g) to the intent (¢) have equal weight within
each group, indicating that members of the group have a
uniform level of interest in the associated intent.
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Exposure transparency: What query exposes
me (or my documents)?

Exposing query retrieval

Hit Q e Q @EEEeee QA Given a document and a specified document

retrieval system, the exposing query retrieval
system retrieves a list of queries from a log
ranked by how prominently the document s

—— exposed by the query when searched against
the document retrieval system

_B _

Document retrieval — —

Given a user-specified query, the document retrieval —

system retrieves a list of documents from a collection

ranked by their estimated relevance to the query Q st QU CReO0E
Q****** Q******

Q HHHHHH

Li, Li, Mitra, Biega, & Diaz. Exposing Query ldentification for Search Transparency. In Proc. Web Conference, 2022.
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Re-interrogating fairness
and bias frames in IR

nature ]

WORLD VIEW | 07 July 2020

Don’t ask if artificial intelligence is
good or fair, ask how it shifts power

=4 Studying Up Machine Learning Data: Why Talk About Bias
When We Mean Power?
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Are the fairness metrics we are developing as a
community really operationalizable in the real
world? Are they having the kind of impact we
desire from them?

Sociotechnical implications of applying emerging
Al technologies in IR go far beyond concerns of
bias and fairness; then why are we (almost
exclusively) focused on them?

Are we often mis-framing how Al impacts power
and justice as concerns of fairness and bias that
detract from underlying sociotechnical issues?

How do we broaden our lens and ensure we are
working towards real social impact?



What Al makes plausible

Generative Al may enable new
ways in which we access
information, but we are only )))
starting to understand and
grapple with their broader
Implications for society

Information retrieval
research is undergoing
transformative changes

What IR research
should we do?

What the world needs

Our world is facing a
confluence of forces pushing us
((( towards precarity (e.g., global
conflicts, pandemics, and
climate change) and we need
robust access to reliable
information in this critical time



Generative Al for information access

The tale of two research perspectives
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How should we think about the
sociotechnical implications of
generative Al for Information access?



work

Consequences-Mechanisms-Risks (CMR) frame
Consequences motivate viewing the Consequences
changes introduced by the technology High-level
through a systemic lens implications of

moral import

Mechanisms contribute to consequences
and risks; represent sites for actionable
mitigation

Risks ground any investigation or

mitigation to actual potential harms on 4 . ) 4 . )
l Mechanisms Risks
peOpLe System behaviors Harms that may
o . and process of materialize for
ldentified consequences, mechanisms, development people and groups

and risks can be mapped to each other \ u

Gausen, Mitra, & Lindley. A Framework for Exploring the Consequences of Al-Mediated Enterprise Knowledge Access and ldentifying Risks to Workers.

In Proc. FAccT, 2024.
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Sociotechnical implications of generative Al for
information access

Table 1: Overview of the consequences for information access from generative Al, the related mechanisms introduced
by these Al technologies, and corresponding risks.

Consequences Mechanisms Risks

Content pollution (§2.1.1.1)

The “Game of telephone” effect (§2.1.1.2)
Information ecosystem Search engine manipulation (§2.1.1.3)
disruption (§2.1.1) Degrading retrieval quality (§2.1.1.4)

Direct model access (§2.1.1.5) . .

The paradox of reuse (§2.1.1.6) g;;lft;tgﬂ;()ﬁ;g{{g@?ﬁgggﬂ%
Concentration of power Compute a'n d data moat (§2.12.1) global inequity (§2.2.1)
(82.1.2) Al persuasion (§2.1.2.2)

Al alignment (§2.1.2.3)

Appropriation of data labor (§2.1.3.1)
Marginalization (§2.1.3)

1.3.3)

Industry capture (§2.1.4.1)
Innovation decay (§2.1.4) Pollution of research artefacts (§2.1.4.2) Risks to IR research (§2.2.2)
Ecological impact (§2.1.5) Resourcje demand' a'nd waste (§2.1.5.1) Risks to environment (§2.2.3)

Persuasive advertising (§2.1.5.2)
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Consequences of generative Al for
information access

¢

whe i, - y

Information Concentration Marginalization Innovation Ecological
ecosystem of power decay impact
disruption
Significantly Worsening inequities Relegating certain Constraining Worsening
changing how in how power and individuals and scientific anthropogenic
different actors and control are groups to the explorations to climate change
stakeholders in the distributed within margins of society specific narrow
online information our society and and corresponding directions while
ecosystem operate different discrimination throttling progress in
on their own and communities other areas of
how they relate to information access
each other research
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Mechanisms of information
ecosystem disruption

The paradox of reuse

Websites like Wikipedia and StackExchange
power online information access platforms,
which in turn reduce the need to visit those
websites.

Examples. LLMs training on content from
these websites that they later regurgitate
without attribution. LLM-powered
conversational search systems deemphasize
source websites reducing the clickthrough
relative to the classic ten-blue-links interface.

Other mechanisms

Content pollution. Enabling low-cost
generation of derivative low-quality
content at unprecedented scale that
pollute the web.

The “Game of telephone” effect.
LLMs inserted between users and
search results shifts the responsibility
of information inspection and
interpretation to the LLM.

Search engine manipulation. E.g.,
prompt injection attacks.

Degrading retrieval quality. E.g.,
Minimizing click feedback signals.
Direct model access. Open access

models pose challenges for content
moderation.
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On technological
power concentration

Annual change in global risk perceptions
over the short term (2 years)
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Biggest increase in ranking

128l Technological power
concentration

I Misinformation and
disinformation

=

‘:k‘fv = '4#.", w&.‘ AN\ 2
meaningfully confront the core
G Interstate armed time: the concentration of economic and political power in the hands of the tech industry—Big
conflict Tech in particular.

LisEl |nsufficient public infrastructure

and services
Source Our latest annual report diagnoses concentration of power
: : in the tech industry as a pressing challenge - and points the
Ykond Ecpnomic o Globatisic path forward to seize this moment of change.

Perception Surveys 2022-2023 and 2023-2024.
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Mechanisms of concentration of power

Compute and data moat. Only a handful of (typically private sector) institutions own
and control the compute and data resources for training and deployment of generative
Al models. Availability of “open access” models don’t fundamentally challenge the
predominant vision of what Al looks like today, which would require dismantling the
data and compute moat itself and turning them into public infrastructure.

Al persuasion. A process by which Al systems alter the beliefs of their users. E.g.,
application of LLMs for hyper-personalized hyper-persuasive ads.

Al alignment. Approaches such as reinforcement learning from human feedback
(RLHF) presupposes some notions of desirable values to be determined and enforced

by platform owners.

Mitra, Cramer, & Gurevich. Sociotechnical implications of generative artificial intelligence for information access. Preprint of chapter for an upcoming edited book, 2024.


https://arxiv.org/abs/2405.11612

Mechanisms of marginalization

Appropriation of data labor Other mechanisms
Includes the uncompensated appropriation of

works by writers, authors, programmers, and peer
production communities like Wikipedia and under-

Bias amplification. Al models
reproduce and amplify harmful biases
and stereotypes from their training

compensated crowdwork for data labeling that datasets leading to allocative and
have been instrumental in the development of representational harms.
these technologies. Al doxing. Al models may leak private

information about people presentin
Al for me, data labor for thee. Al data labor their training data or be employed to

dynamics reinforces structures of racial capitalism predict people’s sensitive information
and coloniality, employs global labor exploitation based on what is known about them
and extractive practices, and reinforces the global publicly.

north and south divide.
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Mechanisms of...

Innovation decay Ecological impact

Industry capture. Profit-driven goals inordinately Resource demand and waste. Increasing demand
influences scientific exploration and dissuade for electricity and water, and electronic wastes.
investments in research notimmediately monetizable e Washington Yot

or Wth h C h a lle ngeS th e status q uo. Projected new energy demand in North America doubles

9-year growth forecast of demand for new electricity, in gigawatt hours

563.9K

THE STEEP COST OF CAPTURE

Authors:
Meredith Whittaker 300K

450K

150K
a

This is a perilous moment. Private computational systems marketed as artificial 2017 2018 2019 2020 2021 2022 2023
intelligence (Al) are threading through our public life and institutions, concentrating
industrial power, compounding marginalization, and quietly shaping access to resources
and information.

Data covers U.S., Canada and part of Baja California, Mexico.

Source: North American Electric Reliability Corp. Long Term Reliability Assessment

Persuasive advertising. Could supercharge climate
Pollution of research artefacts. Misapplications of change disinformation and promote environmentally

LLMs in scholarly publications and reviewing may unfriendly business models like fast-fashion.
negatively impact IR scholarship.
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Sociotechnical imaginaries

“Visions of desirable futures, animated by shared
understandings of forms of social life and social order
attainable through, and supportive of, advances in science
and technology”

~Jasanoff and Kim (2015)

Whose sociotechnical imaginaries are granted normative status and
what myriad of radically alternative futures are we overlooking?

How does increasing dominance of established for-profit platforms
over academic research influences and/or homogenizes the kinds of
IR systems we build?

What would information access systems look like if designed for
futures informed by feminist, queer, decolonial, anti-racist, anti-
casteist, and abolitionist thoughts?
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Recommendations for re-centering IR on
societal needs

Explicitly articulate a hierarchy of stakeholder

3 needs that places societal needs as the most
ystem owner needs -
reve S S SR critical concern for IR research and development

Producer needs

brand exoc IR T Dismantle the artificial separation between
fairness and ethics research in IR and the rest of

itigotion Sratogies for ormarag el
relevance, efficiency, personalization .. » - - . .
mitigation strategies for emerging technologies to

proactively design IR systems for social good

Societal needs
informed citizenry, reliable health infermation, social justice

Figure 1: Hierarchy of IR stakeholder needs. More fundamen- Develop sociotechnical imaginaries based on

tal and critical needs are at the bottom of the pyramid. This : , - .
figure is inspired by Maslow’s Hierarchy of Needs [246] and prefigurative politics and theories of change

Siksika (Blackfoot) way of life [302].
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Reimagining IR through the lens of
prefigurative politics

Figure 2: An image search result page for the query "CEO"
showing a disproportionate number of male CEOs.

capitalist perspectives

* *
¥ Open WebSearch
» ¥ .eu

*¥**

and federated?

Can emancipatory and anti- Hoe

Instead of trying to algorithmically fix under-representation
of women and people of color in image search results for
occupationalroles, can we reclaim that digital space as a
site of resistance and emancipatory pedagogy by allowing
feminist, queer, and anti-racist scholars, activists, and
artists to create experiences that teach the history of these
movements and struggles?

",f’,f

. ’f” ’% "8 Can we translate Freire’s
}E" 4,; = a ? " emancipatory pedagogy to strategies

L & for anti-oppressive information
PEDAGOGY OF ;,g

motivate us to reimagine IEEIFN3Y© access? Can search result pages
search and recommender
systems as decentralized

PAULO FREIRE

support dialogical interactions
between searchers that leads to
knowledge production and better
digital literacy?

Mitra. Search and Society: Reimagining Information Access for Radical Futures. ArXiv preprint, 2024.


https://arxiv.org/abs/2403.17901

Who gets to participate?

This is a call for collective struggle of solidarity with social
scientists, legal scholars, critical theorists, activists, and artists;
not for technosolutionism.

To challenge the homogeneity of the future imaginaries saliently
bound by colonial, cisheteropatriarchal, and capitalist ways of
knowing the world, we need broad and diverse participation from
our community.

Inclusion of people without inclusion of their history, struggles,
and politics is simply tokenism and epistemic injustice; we
should go beyond Diversity and Inclusion (D&I), and enshrine as
our goal Justice, Equity, and Diversity & Inclusivity (JEDI).

Mitra. Search and Society: Reimagining Information Access for Radical Futures. ArXiv preprint, 2024.


https://arxiv.org/abs/2403.17901

Why are we here?

SOME ETHICAL AND POLITICAL IMPLICATIONS
OF THEORETICAL RESEARCH IN INFORMATION SCIENCE

Nicholas J. Belkin and
The City University
London, England

Stephen E. Robertson
University College
London, England

Our work should be in recognition of the
responsibilities of information access

We discuss one such factor: the extent and quality of
information science's responsibility to society; and conclude
that information science must become both theoretically self-
E_onscious and self-consciously based upon a social ideology.

ARTICLE

FACTS-IR: Fairness, Accountability,
Confidentiality, Transparency, and Safety in
Information Retrieval

Editors
Alexandra Olteanu, Jean Garcia-Gathright, Maarten de Rijke,
and Michael D. Ekstrand

technologies and research to society, but we
should be motivated by pluralistic
sociotechnical imaginaries informed by the
diverse history and struggles of our peoples

The workshop brought together a diverse set of researchers and prac-
titioners interested in contributing to the development of a technical research agenda for
responsible information retrieval.

__________________________________________________________________________________________

' We should recognize that this research agenda needs to essentially be
. sociotechnical and requires us to explicate our values and visions for our
' desired futures as a community



Concluding thoughts

Hope this sparks many passionate conversations
and debates; radicalizes us to work on issues of
social import and reflect on why we do what we
do; encourages us to prioritize praxis (research
activities and reflection directed at structural
change) over proxies (e.g., optimizing for SOTA /
leaderboard rankings that do not translate to
scientific or social progress); and inspires us to
build technology not just out of excitement for
technology, but as an act of radical love for all
peoples and the worlds we share.

“If you have come here to help me you are wasting
your time, but if you have come because your
liberation is bound up with mine, then let us work
together.”

— Lilla Watson
and other members of an
Aboriginal Rights group in Queensland
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“The exercise of imagination is
dangerous to those who profit
from the way things are
because it has the power to
show that the way things are Is
not permanent, not universal,
not necessary.”

— Ursula K. Le Guin -

Thankyou for listening!

@UnderdogGeek o bmitra@microsoft.com
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