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Abstract

Users are increasingly being warned to check Al-generated content for correctness. Still, as LLMs (and other
generative models) generate more complex output, such as summaries, tables, or code, it becomes harder for
the user to audit or evaluate the output for quality or correctness. Hence, we are seeing the emergence of
tool-assisted experiences to help the user double-check a piece of Al-generated content. We refer to these
as co-audit tools. Co-audit tools complement prompt engineering techniques: one helps the user construct
the input prompt, while the other helps them check the output response. As a specific example, this paper
describes recent research on co-audit tools for spreadsheet code powered by generative models. We explain
why co-audit experiences are essential for any application of generative Al where quality is important and errors
are consequential (as is common in spreadsheet computations). We propose a preliminary list of principles for
co-audit, and outline research challenges.

Introduction

Context: the rise of copilots powered by foundation models

In this paper, we use the term copilot for any system for human-computer interaction augmented by
generative Al. The interaction between human and generative Al may be textual chat, or rely on a
graphical interface.

In the past two years, many copilots have become available as commercial tools. In mid 2021,
GitHub Copilot was released, aimed at software developers. In late 2022, OpenAl launched ChatGPT,
a general-purpose tool for the general public.! In early 2023, to list just a few prominent examples,
Microsoft released Bing Chat? and announced Microsoft 365 Copilot,®> Google released its Bard chatbot,*
and OpenAl released its Code Interpreter,® one of several plugins for ChatGPT. Meanwhile, researchers
have explored copilots, such as Sensecape [1], an interface that provides multilevel abstraction and
sensemaking, that illustrate how interaction with a copilot can go beyond textual chat.

Copilots rely on foundation models [2] to generate a response given a prompt provided explicitly or
implicitly by the human user. The response may come directly from the model, or indirectly through
the use of external tools or plugins. The prompt and response may include more or less structured
information such as code in a programming language, lists or tables, or functions to be called, or
actions to be executed. In the simplest case of a large language model (LLM), the prompt and response
are textual, but in general foundation models may process other modalities such as audio, images, or
video.

The prompt-response-audit cycle

From the perspective of the human user, interaction with the copilot consists of a prompt-response-

audit cycle, as shown in Figure 1. The cycle is compatible with Glassman’s human-Al conversational

framework [3].

1. Prompt. Given their implicit intent or purpose, the user prepares an explicit prompt to pass to the
copilot. The user may rely on prompt engineering skills they have learnt, or on prompt engineering
tools that help to build the prompt [4]-[6].

ChatGPT a year on: 3 ways the Al chatbot has completely changed the world in 12 months, 30 November 2023.
A Tech Race Begins as Microsoft Adds A.l. to Its Search Engine, 7 February 2023.

Introducing Microsoft 365 Copilot — your copilot for work, 16 March 2023.

Google CEO tells employees that 80,000 of them helped test Bard A.l., 21 March 2023.

ChatGPT plugins, 23 March 2023.
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Figure 1. The prompt-response-audit cycle.

2. Response. The user waits while, given the prompt, the copilot generates a model response. The
response may be the direct output from a generative model, or it may be the result of an interaction
between a generative model and a set of external tools or plugins. Often, the copilot warns the
user that the response may contain errors and should be checked.

3. Audit. Given their intent, the user evaluates the response, and decides to accept it, or to iterate
further in the cycle. We call this human evaluation of the response an audit, in the sense of a
systematic review. Depending on the intent, audit may be to an objective standard, or subjective
to the user. During the audit, the user may decide one or more of the following.

(A) They are satisfied with the response, given the intent.

(B) There is some mistake in the response, given the intent.

(C) The intent itself was mistaken, and needs to be refined.

In case (A), the cycle for this intent ends. In case (B), the user may directly repair the mistake,

or do so by continuing with an updated prompt. In case (C), the user continues with an updated

intent and prompt, or may directly repair the mistake.

In this context, audit is the systematic review of a piece of Al-generated content, looking for
mistakes, that is, mismatches between the intent and the response. The human task of auditing
is hard, perhaps often performed poorly and with cursory effort, and getting harder as responses
become more complex. Without machine assistance, we fear that audit is often performed poorly by
humans. Copilots often warn users that responses may contain mistakes, but checking is a lot to ask
of unassisted users.

We introduce the term co-audit for any tool-assisted human experience for audit.

Co-audit encourages and assists the user to heed the warnings about Al-generated content, and to
do a better job of auditing the response. The “co"” in co-audit is to emphasise that the human works
with some tool support to do the audit. The tool support may or may not itself use Al technology.
Co-audit is about understanding the response, but also about the process of clarifying the intent, and
effectively communicating that updated intent to the model.

Figure 1 depicts prompt engineering and co-audit as complementary aspects of human-Al dialogue.
The one helps construct the input prompt, while the other helps double-check the output response.
We intend the cycle to apply broadly to many different situations, including textual chat between a
human and an Al tool, but also mouse-based interactions in graphical interfaces where the prompt is
constructed by the system from a mouse click (a form of prompt engineering). Dually, the experience
abstracted by the co-audit box in Figure 1 may involve various sorts of interaction with the system,
text-based or mouse-based, for example.
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For a concrete example, consider ChatProtect® [7], a chat experience with a language model,
enhanced with features to detect and remove hallucinations. ChatProtect detects hallucination by
sampling multiple completions from the model, and testing when they disagree. The co-audit experience
lets the user inspect different sentences in the response to see the effect of ChatProtect.

Co-audit tools may help users identify mistakes in their intent, and subsequently refine them (user
decision type (C) as above). For example, if the user asks a Copilot to draft a “polite” email, and
the model produces a text containing the word “demand”; a co-audit tool might plausibly produce a
cautionary warning that this word might not be considered polite. However, on reflection, the user
might consider the word acceptable in the context and decide that what they really wanted was a
“formal” email. Their intent is thus refined. Observe that the refinement of intent in this case was not
a directly designed outcome of the co-audit tool, which is to help assess correctness with respect to
the assumed intent of producing a polite email. Instead, it is a beneficial side effect, similar to how
the grounded abstraction matching tool studied by Liu, Sarkar, and others [8] was not intended as a
tool for explaining the model output, but nonetheless could serve as explanations in practice, as was
observed during the study. Human intent can be shaped as a side effect of engaging with many tools.
Engaging with notations such as algebra or programming languages for instance, provides a notational
surface against which user intent is exercised, and within which it can be expressed and negotiated
[9]. The same is true of professional knowledge workflows built around the features and limitations
of complex software [10]. Even the reification of ideas through the simple act of putting them into
words forces us to refine and clarify them. Supporting the refinement of intent, however, is a broad
and challenging problem, and there are many ways in which this can be achieved, not all of which
involve helping the user check the correctness of the model output. For this reason, we place type (C)
decisions aside for the rest of this paper, and while noting the potential of co-audit tools to help refine
user intent, we will not discuss in further detail how to explicitly support this function. We instead
focus on the relatively simpler, but nevertheless challenging and important case where the user intent
is “correct” but the response mistaken.

1.3 The purpose of co-audit is to identify mistakes and repair them
When auditing, the user is looking for any mistake: any part of the response that doesn't match their
intent. Mistakes include textual hallucinations, defined as “generated content that is nonsensical or
unfaithful to the provided source content” [11]. Other examples (which may or may not count as
hallucinations) include a summary that omits important information, faulty claims about the world, a
faulty fictional narrative that mixes up characters or timelines, faulty mathematical reasoning (including
faulty arithmetic or algebra), faulty code, or a faulty image (such as a hand with six fingers).

Our definition of mistake includes correct information in a response that doesn't match the intent;
for example,”Cairo is the capital of Egypt” would be a mistake given the prompt “What is the capital
of Eritrea”. Mistakes may be useful even if they don’t match the intent behind the prompt. In our
example, the user may be compiling a list of capital cities in Africa.

There are several concrete examples where copilots make mistakes of this sort. For instance, GPT-4
can make mistakes in logical and arithmetic reasoning [12]. OpenAl's Code Interpreter is effective at
automating data science tasks [13]. Still, users need to be careful: a commentator noted that “Code
Interpreter made several logical mistakes that only an expert could have caught.”” In the domain of
mathematics, Collins and others develop a framework to evaluate how effectively humans can develop
proofs despite the faulty algebraic reasoning made by language models [14]. One of their conclusions
for any mathematician using an LLM is to “pay attention”: LLMs can generate extremely compelling
mathematical language and still be wrong.

Bias, defined generally as a disposition or prejudice towards or against a person or group, particularly
when such a disposition impacts the perception of fairness, may also be a form of mistake. Bias
in an LLM’s output may arise from bias in the training data, the training and inference algorithms
themselves, the user prompt, or a combination. The questions of blame (where does bias come from)

6 ChatProtect detects and removes hallucinations of LLMs when you chat with them, 9 September 2023.
7 | rewrote around 1,000+ using OpenAl’s Code Interpreter and am impressed!, 12 July 2023.
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and responsibility (what, if anything, to do about it, and who should do it) are heavily debated.

What position should co-audit tools occupy with respect to bias? To answer this question, it is
helpful to consider a concrete example. Suppose the user has a collection of documents pertaining to a
complex topic involving dispositions towards different groups, such as affirmative action at universities.
The collection may include essays, news articles, university memoranda, legal proceedings, etc. Suppose
the user wishes to summarise these documents and prompts an LLM to “Give me a summary of these
documents”. In response, the LLM produces a summary which can be interpreted as prejudiced against
a particular group. Is this a mistake? Consider some possible nuances of this situation:
= The word “summary” as applied by the user may implicitly include the property of being free from

bias against a particular group, on the basis that a good summary should be unbiased and thus no

further elaboration is needed in the prompt (i.e., the user sees no need to explicitly specify “give
me an unbiased summary”). In this case, a biased summary is a mistake. On the other hand, the
word “summary” may imply no such requirement — here the biased summary may not be considered
by the user to be a mistake. Should co-audit tools intervene here to introduce the system designers’
values around biases?

= The collection of documents might itself be biased towards the views of one particular person or
group, and the bias in the output is a result of this. The output could be interpreted as an accurate
summary of this particular biased set of documents. Is this bias a mistake? It might not be, if the
user wished for a summary that accurately reflected the biases in their corpus.

= The language model is itself biased towards the views of a particular group because of its training
data or algorithm, and the bias in the output is a result of this. This would clearly seem to be
an undesirable error. However, it might still not count as a mistake if it matches the user intent.

What if the user was explicitly aware of the bias in the model and wished to apply it to produce

biased content? Again, should co-audit tools intervene here to introduce the system designers’

values around biases?

Clearly, whether bias is a mistake depends on the user intent, which we can now see is woefully
underspecified in our initial vignette of the situation. A critical design approach might venture that we
ought to shape the user’s intent in such a way that their intent includes the property of being free
from bias, regardless of the source of the bias. However, we have already left intent shaping outside
the explicit scope of co-audit. We treat bias similarly: if freedom from bias is part of the user intent,
and the output is biased, then this is a mistake and within the remit of co-audit. Co-audit tools are
involved in rectifying bias to the extent that we help the user match the output to their intent, but no
further.

The user faces three challenges when auditing the response. These are intensifying as more
knowledge workflows increasingly incorporate Al-generated content.

1. It is hard to entirely eliminate mistakes at the model response step.

Despite much research [15]-[17] and benchmarks [18] hallucinations still occur. Copilots built on

natural language generation (and indeed other modalities such as images) therefore inherit the

possibility of hallucinations and other kinds of error.
2. The patterns of mistakes from humans and Al are different.

The shift from human-generated to Al-generated content creates a qualitative shift in the user

experience of audit. For example, checking a human-authored document summary for correctness

is done with a model of the author’s intent and kinds of quality issues that are known to arise
when people write text. Is the author well-meaning or adversarial? Are we looking for unsupported
statements, irrelevant statements, omissions, or overemphasis? In contrast, Al-generated content
has errors for which it is impossible to ascribe a “motive”. Due to hallucinations, there are broad
issues of factual correctness and grounding in the source data that are more common and important
for Al-generated content than for human-generated content.

3. The user needs decision support after finding a mistake in the response.

A mistaken response might be viewed qualitatively as an error in the system’s interpretation or

understanding of the intent, or as an error in executing the interpretation. Depending on how the

mistake is interpreted, the user may need to update their prompt, attempt to work with and refine
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the mistaken output, or abandon the generative tool altogether for a particular task.

Intent matching is the user challenge of expressing their intent in a way that the model would
“understand” correctly, and then checking whether it has done so (generalising “abstraction
matching” [8]). When knowledge work is dominated by primarily human-generated content, intent
matching is externalised to the relationship between individuals; if | ask you to do a task, and it
appears that you had misunderstood me, | will take it up with you, not the software. When an
individual works alone, the issue of intent matching is externalised to the user's own conception
of their skills (“am | applying this feature correctly to achieve what | want?"). But generative Al
tools create a new expectation, that the user can express their intent in the way they might express
it to a colleague. This creates a new type of relationship between user and system in which the
responsibility for intent matching cannot fall either entirely on the user, or be externalised to the
relationship with a human colleague.

The research field of interactive machine learning commonly frames the role of the user interface
as a decision support mechanism; i.e., giving the user the information they need to take the next
step in refining and improving their model [19] [20]. Co-audit systems need to incorporate decision
support specifically geared towards repairing issues with intent matching and correctness, a type of
support that is only necessary in a knowledge workflow dominated by Al-generated content.

1.4 Co-audit matters in some application areas more than others
Co-audit experiences matter most in application areas where correctness is important and factual or
reasoning errors are consequential.

Three such example areas are technology, healthcare, and finance. Table 1 shows examples of
tasks within each that could benefit from co-audit experiences. The table mentions three examples of
Al systems that could potentially benefit from co-audit: GitHub Copilot, Nuance®? ?, and systems from
Bloomberg. The tasks are not necessarily applicable to all the systems mentioned.

The need for co-auditing for exploratory or creative areas, such as creative writing or music
recommendations, is less clear as there is no definite right answer, and it is subjective whether part
of the response is a mistake. Still, a critique that identifies shortcomings is valuable as a co-audit
experience. If an LLM helps to write a novel, a co-audit experience could help identify shortcomings
in the story or writing, and to identify potential repairs. The role of tool support in such a scenario,
rather than co-audit to detect mistakes, could be to provide the user an estimate of the system's
diversity and encourage the user to reassess their asks or priorities.

Hence, the need for co-audit varies depending on properties of the users, the domain, and the task,
making co-auditing a challenging and highly custom research space. There is not likely to be a single
co-audit experience that dominates all application areas. Yet it seems plausible that certain principles
of design for co-audit experiences may be broadly applicable across different domains.

1.5 Co-audit matters to some people more than others

As we design and critique co-audit mechanisms, we should bear in mind that using generative Al

demands deep cognitive effort. Tankelevitch and others [21] consider thinking, evaluating, and adapting

as the crucial aspects to the user’s cognitive effort as they work with generative Al. Their work is

informed by the psychological concept of metacognition (thinking about thinking) [21].

1. Thinking: The user needs self-awareness of their concrete goals and intentions, and the ability to
express their goals as effective prompts or commands.

2. Evaluating: The user needs the ability to evaluate the output, and the confidence to challenge it
when it appears wrong.

3. Adapting: The user needs flexibility either to repeat and to adapt prompts, or to correct the output.

Thinking is the effort during the prompt part of the prompt-response-cycle in Figure 1, whereas

evaluating and adapting are the effort when using a co-audit tool. Evaluating outputs from generative

8 How can Al unlock next-generation radiology reporting?, 15 August 2022.
9 Nuance and Microsoft Announce the First Fully Al-Automated Clinical Documentation Application for Healthcare, 20
March 2023.
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Al is far more important and effortful compared to, for example, mere word or phrase suggestions from
auto-complete powered by previous generations of machine learning technology. The user’s confidence
in themselves is also important: studies of decision-making with Al find that users’ confidence in
themselves may be more important than their confidence in the Al itself [22]-[24].

Hence, co-audit mechanisms may matter most to less intrinsically confident users: co-audit can
equip them to effectively and efficiently assess and incorporate suggestions from generative Al.

1.6 This paper and its context

The contributions of this paper are to identify co-audit experiences as an important aspect of interactions
between humans and copilots, and to begin a systematic study of co-audit, including needs, case
studies, some guiding principles, risks, and research questions. Co-audit is a novel approach to improve
the usability and reliability of code generated from natural language by LLMs.

This paper came about as a result of a one-day internal workshop at Microsoft in May 2023.
A companion technical report includes further details and examples [25]. The work in this paper
contributes towards the Microsoft New Future of Work Report 2023 [26].

Area Example Al Systems | Example Tasks

Technology GitHub Copilot project planning [27]
code authoring [28]
documentation [29]
code reviews [30]
analysis [31]

Healthcare Nuance diagnosis [32]

prescription calculations
authoring clinical notes [33]
nutrition recommendations [34]
mental health [35]

on the go recommendations

Finance Bloomberg GPT financial research [36]
[37] trend analysis [38]
FinGPT insurance policy recommendations
[39] financial investments [40]

business plans [41]

Table 1. Important areas for co-audit. Specialised models and copilots have started to emerge for technology,
healthcare and financial applications. There is a need and opportunity for co-audit tools in key tasks, such as
the ones presented in this table.

2 Taxonomy of co-audit needs

The design requirements for co-audit systems likely vary substantially across different task contexts.
To make progress in accounting for the diversity of human-Al collaboration scenarios, we propose a
preliminary taxonomy that characterizes key dimensions along which co-audit needs differ.

Ease of detection: how easy is it for the user to detect an error in the Al output? This can range from
very easy (obvious at a glance) to hard (e.g., needs careful inspection of the output, cross-referencing
with other sources, etc.). For instance, correctness of an Al-generated image usually can be told at a
glance. On the other hand, correctness of several hundred lines of Python performing data analysis
may be far from obvious.

Cost of error: how costly is an error in this situation? The cost can range from low (the error is
inconsequential) to high (catastrophic). Automatically assessing the cost is a difficult task for tools as it
depends on rich context. For example, Al introducing a formula error can be relatively inconsequential
if the formula is being used as part of an exploratory analysis with no downstream uses, but the same
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kind of error can be catastrophic if its result is used to make a critical business decision.

Frequency of audit: how often is co-audit required or needed in the workflow? If the aim is to
provide spot checking of every transient Al-generated output, the design of co-audit tools will need to
be lightweight and impose low cognitive and information processing burdens, focusing only on key
aspects of intelligibility (akin to spelling and grammar checking). If errors are more infrequent, or if
co-audit only occurs at significant milestones (e.g., at the end of the preparation of a document, or for
formal auditing procedures) then co-audit tools can be more comprehensive and information dense.
Solution definition and constraints: how large and well-defined is the solution space? A solution
space may be very large, yet still well-defined: for example, if an LLM is asked to generate a sorting
algorithm, there are a potentially infinite number of correct solutions, but it can be established
definitively whether a given solution is correct. In some cases the solution may take a very wide
range of acceptable forms, but which are judged subjectively (e.g., creating a nice looking design
for a presentation, or writing an essay). Conversely, solutions may have very narrow or even singular
objectively correct form (e.g., the items in a budget are accounted for correctly in a grand total).
End-user expertise: what kinds of skills and expertise does the intended end-user have? For instance,
co-audit for a code-generating copilot would vary depending on whether the end-user is a professional
programmer, versus a non-expert end user. Analogous situations arise in other application domains:
in healthcare, for instance, a system for supporting treatment and diagnosis would present different
information (and different audit challenges) for doctors seeking to make a decision grounded in clinical
practice, versus patients with limited medical expertise.

Positioning: What is the implied metaphorical relationship between the Al copilot and the human
user? For example, the pair programming framing in GitHub Copilot implies co-working towards a
shared goal, with tasks delegated from the user to Copilot. In contrast, meeting coach in Microsoft
Teams or presenter coach in Microsoft PowerPoint position themselves as reflective critics of the users’
behavior. Different Al “personas” require different kinds of audit support. For a co-working Al like
GitHub Copilot, the audit process would likely need to be focused on ensuring that the Al is enhancing
the performance and skillset of the user—providing efficient, correct and relevant suggestions. For
an Al with a critical role such as a coach in Teams or PowerPoint, the audit mechanism might focus
more on evaluating its ability to provide constructive and accurate feedback.

Scale: how can we design co-audit to scale to large amounts of Al-generated content? Leveraging Al
to generate content empowers individuals to be more productive. As a result, Al will likely allow more
content to be generated more quickly, resulting in the challenge of having individuals co-audit all that
content. Co-audit tools must be designed to scale in the amount of human effort as the amount of
generated content increases.

Collaboration: how do we design co-audit to support collaboration? Section 1.2 frames audit as an
activity by a single human using an Al tool, and co-audit as tool assistance for audit. More generally,
two or more humans could collaborate during the audit step. A co-audit tool could enlist the help of a
co-worker to help inspect or repair the response from the Al. The co-worker could be a local colleague
or a remote gig worker. For instance, if applied to consider Al-generated content, the Find-Fix-Verify
crowd programming pattern [42], which enlists gig workers to help within a productivity tool, would be
an example of co-audit.

3 Case study: co-audit tools for spreadsheet computations
We describe two related tools [8] [43] built at Microsoft Research as part of an internal project to
synthesise spreadsheet code from natural language. The tools shared infrastructure to generate Python
using the OpenAl Codex model and to execute it using an addin for Microsoft Excel. Both these tools
have co-audit experiences intended to help the end user double-check the generated code.

3.1 Grounded abstraction matching
Grounded abstraction matching is a technique, implemented in one of our tools [8], to help users
learn how to effectively communicate their intent to Al systems like code-generating large language
models. It addresses the abstraction matching problem, where users struggle to find the right level of
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Figure 2. ColDeco

abstraction when expressing their goals in natural language that the LLM can reliably interpret.

Grounded abstraction matching works by taking the user's initial natural language query, generating
code from it via the LLM, and then mapping that code back into a natural language utterance that
serves as an editable example of how to invoke the same behavior from the system. Concretely, the
user enters a query like “calculate average monthly sales.” The system generates Python code from
this query, e.g., df [*monthly_sales_avg'] = df [ sales'] / 12. Then it translates this code
back into a grounded utterance:

1. Create column monthly_sales_avg
2. Column sales divided by 12

This grounded utterance represents the level of abstraction—vocabulary, structure, specificity—
needed for the system to reliably reproduce the same output. The user can edit the steps and observe
the effects on the code produced, developing a mental model of how to effectively prompt the system.

Grounded abstraction matching exemplifies co-audit by assisting users in evaluating Al-generated
content in multiple ways. For example, the grounded utterance reveals how the system interpreted the
original query, making mismatches in intent clear. Users can update the utterance to align intent. The
step-by-step breakdown of the Python code into naturalistic utterances exposes the reasoning chain,
helping non-expert users spot faulty logic. Finally, grounded utterances provide an editable target to
iteratively refine queries, which gives users the decision support then need to proceed after they have
received the model output.

In summary, grounded abstraction matching helps users learn how to effectively communicate with
LLMs for code generation. By grounding output code back into editable, step-by-step natural language
utterances, it provides a mechanism for users to co-audit the system's interpretation of their intent,
spot errors, and iteratively repair issues, while exposing them to reliable patterns of interaction.

3.2 An end-user spreadsheet inspection tool for Al-generated code
ColDeco [43] is a spreadsheet tool for inspecting and verifying calculated calculated columns without
requiring the user to view the underlying code. With generative Al, natural language is now a
programming language, meaning users without coding experience can generate complex logic. ColDeco
uses helper columns and row summaries to assist users in verifying that the program behaves correctly,
or to localize the fault if it does not.

Figure 2 presents ColDeco as a user debugs a generated program intended to calculate an
abbreviation composed of the initial letter from the first, middle, and last names.

The inspect columns view displays the generated solution which has been decomposed into helper
columns by the user; each generated column has a natural language description of the code associated
with the column. The columns are arranged in a tree view representing the underlying program
structure, with Label 1 annotating the intermediate column text concatenation. The helper column
combines the initial letters from the first and middle names, and by expanding the column in ColDeco,
the new columns are added to the table.

The inspect rows view clusters rows in the table according to evaluation behaviours that are
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determined through dataflow analysis. There are two clusters for this table: the rows that return a
string for the abbreviation, and the rows that erroneously calculate a missing value.

Like grounded abstraction matching, ColDeco satisfies co-audit needs in multiple ways. For example,
helper columns and their natural language descriptions illustrate how the system has implemented the
solution, allowing users to verify that it matches their intent. Row summaries allow users to quickly
identify rows that may need further inspection. Finally, expanding helper columns can enable users to
make targeted repairs through programming-by-example techniques such as FlashFill [44].

4 Principles of UX design for co-audit
Here is a list of design principles distilled from discussions at our workshop and afterward. The
participants were all Microsoft employees. Some were from product teams engaged in building and
evaluating copilots. Some were from research teams experienced with research using LLMs. The first
and second authors drafted these principles, attempting to reflect the most salient points from the
discussion. All participants were invited to help edit and refine these principles, and be co-authors,
although not all did.
1. Don't rely just on the LLM to co-audit itself.
It's an anti-pattern to trust the language model to audit itself. For example, ChatGPT created a
legal motion for a lawyer, but with made-up cases, rulings and quotes. In an attempt at co-audit,
the lawyer asked the program to verify that the cases were real. ChatGPT responded incorrectly
that the “cases | provided are real and can be found in reputable legal databases”. The lawyer
submitted the brief to court and consequently was fined by the judge.'® The example illustrates
that co-audit may fail: an attempt at co-audit may or may not succeed in detecting an error.
2. Ground outputs by citing reliable sources.
Citing sources is becoming a common pattern for Al-based chat systems!! 12
such as the Wikipedia plug-in for ChatGPT.!3
3. Teach the user how to construct effective prompts.

and their plug-ins,

For example, apply grounded abstraction matching: after translating the user query into a system
action, help the user understand how to consistently invoke the same system action through an
editable example, e.g., a “grounded utterance” [8].

4. Inform the user with visuals as well as text.

For example, ConceptEVA provides co-audit of a document summary using techniques from
exploratory visual analysis to show the concepts of interest underpinning the summary [45].

5. Get the user to choose between multiple options.

Consider, for example, the LEAP environment for Python programming [46]. LEAP uses comments
or code context to suggest multiple Al-generated suggestions. Its co-audit features include preview
of each suggestion, and live editing of the suggestion including after its insertion into the program.

6. Prioritize the user’s attention to most likely error.

For example, consider an experimental LLM-powered search experience [47] that uses colors to
highlight high or low confidence measurements (numbers with units) as a co-audit feature for search
results. The highlighting relies on token probabilities from the LLM. The authors find overall that
highlighting reduces the time taken for users to spot incorrect information.

7. Guide the user to attend to links between parts of the output and the prompt or input document.
Take, for example, the nl2spec system [48]. Given a natural description of a logical property, the
system uses an LLM to synthesise a formula for the property in linear temporal logic. To aid
co-audit, the system additionally uses the LLM to map subformulas of the output formula back
to corresponding natural language fragments of the input. Users can edit the subtranslations to
correct errors.

8. Involve two or more humans in a collaborative experience.

For example, one user may instigate the Al-generation of an output, while a different user may

10 Here's What Happens When Your Lawyer Uses ChatGPT, 27 May 2023.

11 Reinventing search with a new Al-powered Microsoft Bing and Edge, 7 February 2023.
12 Bard can now connect to your Google apps and services, 19 September 2023.

13 New Wikipedia ChatGPT plugin, 13 July 2023.
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help to co-audit the output. Here, we go beyond the prompt-response-audit cycle in Figure 1,
which revolves around a single user, to be a collaboration amongst two or more humans, assisted
by co-audit tools.

9. Exploit tools designed for checking human-generated content.
In Section 3 we described a couple of research prototypes designed to co-audit Al-generated
spreadsheet computations. Still, if the computation is represented as a formula, any existing
debugger for a spreadsheet formula, such as FxD [49], can serve as a co-audit tool.

10. Aim for positive “weekly cost-benefit” ratio for user time invested.
This principle concerns measuring adoption of co-audit technology and using the measurement as
a guide to ensure that co-audit is worth the time invested by users. (This final principle, more
about adoption than design, did not originate at our workshop, but is adapted from a proposal for
successful adoption of formal methods technology [50].)

5 Potential pitfalls for co-audit: some research challenges
In this section we consider potential risks arising from co-audit tools that can lead to attacks, system
misuse (under-reliance or over-reliance) and even long-term societal harms. The content is derived
from an internal workshop and represents the views of the participants, as described at the start of
Section 4. This section is not meant to provide an exhaustive overview, but we believe that starting to
address the outlined issues is important for the co-audit experience. These risks are well known in the
literature for related domains. We encourage the community to help us validate our hypothesis that
they emerge for co-audit mechanisms as well, assess whether our proposed mitigations are valid and
identify further gaps in our thinking.
Security Attacks: The use of co-audit may help mitigate potential security attacks (and other
responsible Al concerns, such as privacy and fairness issues) by facilitating human oversight of the
generated content for possible harms. At the same time, the co-audit experience itself can be another
possible point of attack for adversaries. For example, attackers understanding the abilities of co-audit
can formulate their attacks specifically to target co-audit weaknesses. Also, the co-audit tool itself,
if compromised, can be a rich target for exploitation as it has direct access to user information, the
Al-generated content, etc. Further research is needed to identify attacks and mitigations.
System under-reliance or over-reliance: We believe that co-auditing tools can be susceptible to
both under-reliance and over-reliance. While co-audit gives the user a greater understanding of the
Al-generated content, it does not guarantee that the result is correct. Likewise, if the cognitive load
of co-auditing is too high, users could under-rely on the co-auditing system (for example, by having
too many tasks to verify) or if they lack trust in the system. To minimise the cognitive load, the
system should be non-intrusively integrated in the user's flow and ask for very specific input from
the human to make corrections. To improve trust, the system could show the work or rationale at
various granularities including the impact of fixes (if we make a change at a certain point in the flow,
be explicit about how the remainder of the flow gets impacted) and be explicit about the coverage of
types of errors it can handle. Users could also over-rely on the co-auditing system if the system exhibits
anthropomorphic behaviour (for example, by generating content claiming personified attributes) or if
the remit and level of accuracy of the system are not clearly understood. Using linguistic cues to show
uncertainty and articulating the specific assumptions made during the audit process could help the
user understand the system'’s limitations.
Societal harm: There are significant long-term implications as humans increasingly leverage Al in
their activities. Co-audit, which provides users with greater confidence in their Al interactions, may help
accelerate this trend. How human/Al interaction will evolve and what implications this evolution has
for society are largely unknown. This uncertainty requires careful consideration of potential risks and
unintended consequences that more powerful Al and better co-audit tools may enable. For example,
we could end up reducing creativity or diversity of thought by incentivising humans to produce outputs
that co-audit systems can verify. There may also be an impact on workers (e.g., by turning every
professional into their lesser-paid gig-based equivalent as users of co-audit tools), resulting in deskilling
of workers, reduction of their economic value, and loss of jobs. In this scenario, there is a potential
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harm in the transfer of responsibility of review to the LLM with co-audit tool as the LLM is given
more and more responsibility as its capabilities increase. There is also the risk of a vicious cycle of
skill-transfer from the human to the LLM as the LLM directly learns from successful human interactions
and requires less and less guidance from human input over time. Moreover, the availability of Al and
co-audit may result in humans losing their ability to effectively reason about knowledge sources and
make judgements about goodness and correctness. Use of Al and co-audit may lead to confusion
around who is responsible for an error that leads to harm. For co-auditing tools we believe that we
need to have in place opt-in/opt-out functionality and sufficient customization such that the user can
control the level of correctness, verbosity, and modality.

6 Related work

6.1 Related but distinct concepts

Algorithmic audit is defined by Metaxa and others [51] as “a method of repeatedly querying an
algorithm and observing its output in order to draw conclusions about the algorithm’s opaque inner
workings and possible external impact”. Rastogi and others [52] argue for the importance of rigorous
algorithmic audit of LLMs before deployment, to counter bias and resulting harms. Co-audit is distinct
from algorithmic audit: co-audit examines a single response rather than repeatedly prompting the
algorithm to examine its statistical properties. Still, there may be scope to detect bias in responses via
co-audit mechanisms.

Co-audit is also distinct from evaluation of an NLP system's performance as a whole, for instance,
on a suite of benchmarks. See the classic review by Sparck Jones and Gallier [53], for example. The
distinction is that co-audit is for a specific instance of a user interaction, while algorithmic audit
or NLP evaluation consider general properties of the whole system or model, rather than individual
actions.

An alternative definition of co-audit might be that co-audit is a human and Al auditing their work
together. This metaphor presents human and Al as two entities who, while collaborating to produce
an output, audit the output together. Although anthropomorphic metaphors are common, the practice
may be misleading [54]. Hence, we prefer to frame co-audit in terms of tool use by a human user,
instead of a metaphorical collaboration [55] [56].

6.2 Mistakes
Dealing with errors has been a key part of research on human-Al interaction; for instance, several of
the guidelines for human-Al interaction [57] concern how to deal with Al errors. [58] identify research
challenges raised by LLMs for Al transparency, citing research explaining individual outputs [59]-[63].

The term “explanation” encompasses a wide variety of techniques to assist the user of Al systems,
and subsumes aspects of the experience that relate to the correctness of model outputs, such as
evaluating model outputs and then correcting them. Research in explainable Al has thus long
encompassed the specific subset of concerns we delineate here as the need for co-audit. For example,
Lim and Dey's intelligibility types for context-aware applications [64] include types of information that
help users detect errors (e.g., why, how, why not, what if, certainty), as well as correct them (control).
In Tintarev and Masthoff's criteria for explanations [65], co-audit is covered by transparency (explain
how the system works) and scrutability (allow users to tell the system it is wrong).

While the concerns of co-audit are not new, the broad introduction of generative Al with its
particular strengths and limitations is accompanied by a number of shifts in the nature of the user
experience of intelligent systems. The shift in user experience has been described as the “generative
shift” [66]. In particular, users will apply Al more intensively to existing tasks, they will apply it more
extensively to tasks which they previously did not apply Al to, and they will apply it more frequently.

There are concomitant shifts in the user experience of error. System errors will have the opportunity
to become more consequential, span across a wider set of tasks, and occur more frequently than
before. In earlier generations of interactive machine learning (IML) tools, the user was responsible
for directly training the model to shape its behaviour and make it perform more optimally in the
long run, e.g., the user of a photo editing tool training an image segmentation engine to remove
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the background from their images [67], a spreadsheet user building a model of their data to impute
missing values [68], [69], or an email client user training a spam filter [70]. In contrast, the prevailing
commercial idioms of user experience for contemporary generative Al tools are far more passive: users
can control the behaviour of the model in individual instances through their prompts, but they cannot
participate in its construction on the more fundamental level that was common in earlier IML tools,
such as through the curation of the training set, provision of reinforcement learning feedback signals,
or adjustment of training hyperparameters. Consequently, the interaction context inhabited by Lim
and Dey's “control” [64], and Tintarev and Masthoff's “scrutability” [65], is increasingly divergent
from the interaction context inhabited by generative Al tools: we thus offer co-audit for copilots as a
practical reinterpretation of those concepts.

7 Conclusion and call to action

Just as individuals learned how to best interact with search engines over a period of years, they will

have to learn how best to interact with generative Al and copilots. Human skills in both prompt

engineering and audit are needed. We have discussed a range of aspects of co-audit tools to help

and teach people to audit Al outputs. We believe that some of these co-audit tools and skills should

exist across copilot experiences while other skills will be domain-specific. Our goal is to jump-start

research into these co-audit experiences to maximize the benefits of using Al while minimizing risks.

As a starting point, we have outlined principles of UX design for co-audit and provided examples to

illustrate how these principles can be applied in practice. But many questions and important research

challenges remain. Co-audit experiences will evolve as the underlying foundation models and copilot

infrastructures will evolve. But because co-audit directly connects with user, it is especially important

that these experiences remain similar even as the technology changes. To ensure that we create

enduring co-audit experiences, we challenge the research community to address these questions:

= How to integrate a co-audit user experience into copilot chats?

= How to integrate the co-audit experience across applications that relate to the same content?

= How can co-audit help individuals create, maintain, and check increasing volumes of content that
Al generation enables?

= What co-audit skills are transferable across different vertical uses of Al?

= Will the principles of understanding the co-audit experience remain stable as Al evolves or will it
require frequent redesign?
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