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Abstract
Test collections are crucial for evaluating Information Retrieval
(IR) systems. Creating a diverse set of user queries for these col-
lections can be challenging, and obtaining relevance judgments,
which indicate how well retrieved documents match a query, is
often costly and resource-intensive. Recently, generating synthetic
datasets using Large Language Models (LLMs) has gained atten-
tion in various applications. While previous work has used LLMs
to generate synthetic queries or documents to improve ranking
models, using LLMs to create synthetic test collections is still rela-
tively unexplored. Previous work [14] showed that synthetic test
collections have the potential to be used for system evaluation,
however, more analysis is needed to validate this claim. In this
paper, we thoroughly investigate the reliability of synthetic test
collections constructed using LLMs, where LLMs are used to gen-
erate synthetic queries, labels, or both. In particular, we examine
the potential biases that might occur when such test collections
are used for evaluation. We first empirically show the presence of
such bias in evaluation results and analyse the effects it might have
on system evaluation. We further validate the presence of such
bias using a linear mixed-effects model. Our analysis shows that
while the effect of bias present in evaluation results obtained using
synthetic test collections could be significant, for e.g. computing
absolute system performance, its effect may not be as significant
in comparing relative system performance. Codes and data are
available at: https://github.com/rahmanidashti/BiasSyntheticData
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1 Introduction
The development of test collections is foundational for evaluating
information retrieval systems. Traditionally, constructing these col-
lections has relied on the Cranfield paradigm [5, 11, 20], which
requires substantial human effort to create queries and associated
relevance judgments, making the process both costly and time-
consuming [2, 20]. With the rise of Large Language Models (LLMs),
there has been growing interest in leveraging these models to au-
tomate and reduce the cost of test collection construction [16, 18].
LLMs have demonstrated impressive capabilities across a wide
range of tasks [10, 12, 22], from generating synthetic training data
[1, 4] to providing relevance judgments for search and retrieval
systems [8, 9, 21], suggesting that they could effectively streamline
the test collection creation process.

Recent advances have shown that LLMs can be employed to gen-
erate synthetic test collection, including queries and relevance judg-
ments [14, 15, 17, 19]. This synthetic approach offers a significant
reduction in cost and time compared to traditional methods, and it
has the potential to enhance the scalability of test collection con-
struction. However, the reliability and accuracy of LLM-generated
data for system evaluation purposes remain important areas of con-
cern. LLMs are inherently influenced by the data they are trained
on [13, 23], which can introduce biases into synthetic evaluations.
This presents challenges in using LLM-generated test collections as
a reliable substitute for human-annotated benchmarks, particularly
when biases could impact the fairness and effectiveness of retrieval
systems.

While some studies have investigated the general reliability of
LLMs in providing synthetic relevance judgments [3, 7], there is
no study on the analysis of the biases introduced by synthetic
test collections. Understanding such biases is crucial, especially in
scenarios where synthetic collections are used to evaluate retrieval
systems that may later be deployed in high-stakes or user-facing
applications. Bias in synthetic data can lead to skewed evaluations,
which may, in turn, affect the perceived quality and trustworthiness
of information retrieval systems. In this paper, we conduct an in-
depth bias analysis of synthetic test collections constructed using
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Figure 1: (a) The percentage of queries based on the number of
words in the queries. Real queries are shorter than synthetic
queries. (b) Bland-Altman plot to visualize the comparison
between LLM and human expert judgments.

LLMs. Specifically, we aim to identify and characterize the types
of biases that arise when LLMs are used to generate both queries
and relevance judgments, and how these biases impact system
evaluation. We examine differences in characteristics of human
and synthetic queries and judgments, and consistency in synthetic
judgments, thereby providing insights into the broader implications
of employing LLMs for constructing evaluation test collections. Our
findings contribute to a better understanding of the strengths and
limitations of synthetic test collections. Our results from the linear
mixed-effect model indicate that LLM-based systems receive higher
scores when evaluated on synthetic judgment.

2 Synthetic Test Collection Dataset
We run our experiment and analysis on the TREC DL 2023 pas-
sage ranking1 dataset [6, 14]. To the best of our knowledge, this
is the only existing test collection dataset that contains human
and synthetic queries as well as human expert and LLM judgment
annotations. The dataset contains 82 queries (51 human/real, 18
GPT-4-generated, 13 T5-generated), with judgments on a 4-point
scale. The dataset includes 1,830 perfectly relevant (3), 2,259 highly
relevant (2), 4,372 related (1), and 13,866 irrelevant judgments.

3 Human vs. Synthetic Query Analysis
In this section, we analyse the characteristics of real (or human)
vs. synthetic queries. For analyzing at the query level, two such
characteristics are query length and query vocabulary.

Figure 1 shows that real queries tend to have fewer words com-
pared to synthetic queries, suggesting that real user-generated
queries are generally more concise. This difference in length may
reflect natural tendencies in user behavior, where users aim to mini-
mize typing effort or expect search engines to handle incomplete or
less-detailed questions effectively. Table 1 provides a comparison of
the initial words used in queries. It shows that real queries are sig-
nificantly more likely to begin with the word ‘what’ (7.4% vs. 3.75%),
and real queries contain a greater number of ‘what’ questions over-
all. This suggests that real users prefer to ask direct, fact-seeking
questions, possibly due to the nature of the underlying task or in-
formation need, which synthetic models may not fully replicate.
Both real and synthetic query sets, however, display a relatively
1https://microsoft.github.io/msmarco/TREC-Deep-Learning.html

Table 1: The frequent words in real and synthetic queries
from TREC DL 2023.

Real Queries Synthetic Queries

Word Count % [Rank] Count % [Rank]

what 21 7.14% [1] 10 3.75% [2]
is 14 4.76% [2] 6 2.25% [7]
how 13 4.42% [3] 3 1.12% [12]
of 9 3.06% [4] 7 2.62% [4]
in 8 2.72% [5] 7 2.62% [3]
to 8 2.72% [6] 3 1.12% [13]
a 7 2.38% [7] 6 2.25% [8]
the 7 2.38% [8] 15 5.62% [1]
does 4 1.36% [9] 6 2.25% [6]
did 4 1.36% [10] 0 0% [-]

balanced distribution of common terms, indicating that synthetic
queries are capturing some aspects of real queries effectively.

4 Human vs. Synthetic Judgment Analysis
This section analyzes the difference between the human relevance
judgment and the relevance judgment generated by LLMs.

4.1 Bland Altman Bias Analysis
Figure 1b presents a Bland-Altman plot, which is used to visually
assess the agreement between the judgments made by the LLM
and human evaluators. The plot reveals a bias of approximately
0.28, indicating that, on average, the LLM tends to assign slightly
higher relevance scores compared to human judges. This small
negative bias suggests a consistent but minor tendency for the LLM
to be more lenient in its scoring (i.e., tends to overestimate). The
95% Limits of Agreement, which range from approximately −2.1 to
1.62, capture the expected variability in the differences between the
LLM and human scores. These limits suggest that in most cases, the
difference in scores between the LLM and the human evaluators lies
within this range. The relatively wide span of the limits indicates
substantial variability, implying that while the LLM’s judgments
are often close to those of human evaluators, there are instances
where they significantly diverge.

The distribution of points is widely spread within these limits; it
may suggest that the LLM’s scoring behavior varies depending on
the query’s difficulty or the passage’s characteristics. Additionally,
the presence of any outliers – points lying outside the 95% limits –
can highlight caseswhere the LLM’s judgment significantly deviates
from human evaluators.

4.2 Difference in Distributions
Figure 2 shows the distribution of relevance labels assigned by
human annotators and GPT-4 across three query types: Human,
T5, and GPT-4 queries. Across all query types, human annotators
consistently assign a higher proportion of label 0 (irrelevant), in-
dicating a more conservative approach to judging relevance. In
contrast, GPT-4 more frequently selects label 1 (relevant), suggest-
ing a tendency to interpret borderline cases as having at least some

https://microsoft.github.io/msmarco/TREC-Deep-Learning.html
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Figure 2: Distribution of relevance labels

relevance. This shift is especially evident for T5 queries, where GPT-
4 assigns significantly fewer label 0s and more label 1s compared
to human annotations. Higher relevance labels (2 and 3) appear
less frequently overall, and the differences between human and
GPT-4 judgments are generally smaller and more varied between
query types. GPT-4 gives slightly higher for label 2 and slightly
lower for label 3. This pattern implies that while GPT-4 is more
lenient in identifying weak relevance, it is more hesitant to assign
strong relevance scores. The differences across query types and an-
notator sources underscore systematic variations in how relevance
is judged, highlighting potential biases introduced by LLM-based
labeling and the influence of query origin on perceived relevance.

The Kullback-Leibler (KL) divergence was also calculated to
quantify the difference between the distribution of relevance la-
bel distributions generated by GPT-4 compared to human labels.
The lower KL divergence indicates closer alignment with human
labels, while higher values suggest greater divergence. Overall,
the KL divergence results indicate that GPT-4 consistently align
closely with human relevance judgements across all query types
(𝐾𝐿 = 0.0186), with similar divergence shown for human and GPT-
4 queries (𝐾𝐿 = 0.0328, 𝐾𝐿 = 0.0335), but slightly higher for T5
queries (𝐾𝐿 = 0.0509).

5 System Ranking Analysis
In this section, we analyse the bias that a test collection may exhibit
towards systems using language models similar to those employed
during its construction. Following [14], we categorised TREC DL
2023 systems by their underlying models using the SynDL metadata
[17]. This yields four categories: GPT-based, T5-based, GPT + T5
(combined), and others (e.g., BM25 or models not using GPT/T5).
Figure 3 shows that across all system types, we observe that system
performance tends to be higher on synthetic queries compared to
real queries, indicating that synthetic test collections, regardless of
whether they are constructed using GPT-4 or T5, may be easier and
thus overestimate system effectiveness. For example, in Figures 3b
and 3f, where synthetic labels are compared to real queries under
human labels, nearly all system types show a consistent upward
shift, suggesting an overoptimistic view of their true performance.
This pattern is particularly noticeable in GPT-only runs, which
often appear above the diagonal, highlighting their tendency to
benefit from synthetic setups.

The results point to a systematic bias in favor of systems that
match the model used in test collection generation. For example,
GPT-4-based systems are consistently favored when evaluated on
GPT-4 queries or GPT-4 labels (see Figures 3c and 3g). However, the
Kendall’s 𝜏 values further show moderate to high correlations, with

hybrid setups like GPT+T5 showing better alignment with human-
based evaluations. While encouraging, these findings are based on
a single test collection, and more extensive experiments are needed
to confirm whether these trends hold more generally, especially in
different domains or under alternative prompting strategies.

6 System Evaluation Score Analysis
We use NDCG and MAP metrics to evaluate various IR systems,
comparing traditional approaches to those incorporating large lan-
guage models (LLMs) in the retriever pipeline. In this section, we
analyse the impact of using LLMs in the retrieval process, focusing
on how their inclusion affects performance in relation to LLM-
generated labels and LLM-generated queries.

6.1 Linear Mixed Model
6.1.1 Modeling. To assess differences in metric scores across vari-
ous properties of retrieval systems, queries, and passages, we fit the
data using a linear mixed-effects model. The model examines how
the score depends onwhether the judgment wasmade by GPT-4, the
system type (GPT-based, T5-based, a combination of both, or tradi-
tional), and other system and query features. These include whether
the query was generated by GPT-4, query difficulty (QDR), query
length (QW), the average document length (DL), and the number
of models used in the system pipeline (MN). To capture potential
systematic differences in how GPT-4 evaluates outputs compared
to human judges, we include interaction terms between the GPT-4
judging indicator and each of the other variables. A random in-
tercept for each retrieval system (i.e., submission runs) accounts
for differences and handles multiple observations. The model is
estimated separately for two dependent variables, the NDCG and
the MAP metrics. The modeling is detailed mathematically below,

𝑌𝑖 𝑗 = 𝛽0 + 𝛽1 JudgeGPT4𝑖 𝑗
+ 𝛽2 SysType𝑖 𝑗,GPT + 𝛽3 SysType𝑖 𝑗,T5 + 𝛽4 SysType𝑖 𝑗,T5+GPT
+ 𝛽5 QDR𝑖 𝑗 + 𝛽6 QW𝑖 𝑗 + 𝛽7 DL𝑖 𝑗 + 𝛽8 isGPT4𝑖 𝑗 + 𝛽9 MN𝑖 𝑗

+ 𝛽10

(
JudgeGPT4𝑖 𝑗 × SysType𝑖 𝑗,GPT

)
+ 𝛽11

(
JudgeGPT4𝑖 𝑗 × SysType𝑖 𝑗,T5

)
+ 𝛽12

(
JudgeGPT4𝑖 𝑗 × SysType𝑖 𝑗,T5+GPT

)
+ 𝛽13

(
JudgeGPT4𝑖 𝑗 × QDR𝑖 𝑗

)
+ 𝛽14

(
JudgeGPT4𝑖 𝑗 × QW𝑖 𝑗

)
+ 𝛽15

(
JudgeGPT4𝑖 𝑗 × DL𝑖 𝑗

)
+ 𝛽16

(
JudgeGPT4𝑖 𝑗 × isGPT4𝑖 𝑗

)
+ 𝛽17

(
JudgeGPT4𝑖 𝑗 × MN𝑖 𝑗

)
+ 𝛼 𝑗 + 𝜀𝑖 𝑗

𝛼 𝑗 ∼ N(0, 𝜎2
𝛼 ), 𝜀𝑖 𝑗 ∼ N(0, 𝜎2 )

where 𝑖 indexes observations (i.e., queries) and 𝑗 indexes different
retrieval runs. The term𝛼 𝑗 is a random intercept capturing variation
across runs, assumed normally distributed with variance 𝜎2𝛼 . Resid-
ual errors 𝜀𝑖 𝑗 are also normally distributed with variance 𝜎2. 𝑌𝑖 𝑗 is
the score for observation 𝑖 . JudgeGPT4𝑖 𝑗 is a binary indicator for
whether the judge is GPT-4 (reference: human judge). SysType𝑖 𝑗,𝑘
are dummy variables for system types 𝑘 ∈ {GPT,T5,T5+GPT}
(reference: traditional). QDR𝑖 𝑗 is query difficulty, QW𝑖 𝑗 is query
length by words, DL𝑖 𝑗 is average document length, isGPT4𝑖 𝑗 indi-
cates whether the query was generated by GPT-4, and MN𝑖 𝑗 is the
number of models used in the system pipeline.

6.1.2 Results. Table 2 presents the model and coefficient summary
results. Across both MAP and NDCG scores, systems receive signif-
icantly higher relevance scores when judged by GPT-4 compared
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Figure 3: Scatter plots of the effectiveness of TREC Deep Learning Track 2023 runs based on the generated synthetic evaluation
test collection. Comparison of various human and synthetic configurations using NDCG@10 (top) and MAP (bottom).

Table 2: Summary of Linear Mixed Model Coefficient Esti-
mates for NDCG and MAP Scores. The models are based on
5740 observations, evaluating the effects of various predic-
tors. Regression coefficients, standard errors, and p-values
are presented. Significant coefficients (p < 0.05) are in bold.

Variable MAP Score NDCG Score

Coef. Std. Err. p-value Coef. Std. Err. p-value

Intercept 0.121 0.016 0.000 0.412 0.030 0.000
Judged by GPT-4 0.069 0.016 0.000 0.207 0.021 0.000
System Type: GPT -0.051 0.019 0.008 -0.076 0.039 0.054
System Type: T5 -0.001 0.023 0.964 0.034 0.047 0.466
System Type: T5+GPT 0.092 0.018 0.000 0.166 0.036 0.000
Query Difficulty -0.014 0.002 0.000 0.033 0.003 0.000
Query Length 0.001 0.001 0.376 -0.004 0.002 0.021
Document Length 0.000 0.000 0.000 -0.000 0.000 0.482
GPT4 Query 0.030 0.010 0.002 0.059 0.013 0.000
MN 0.016 0.004 0.000 0.019 0.008 0.016

Interactions
Judged by GPT-4: SysType (GPT) 0.032 0.012 0.006 0.018 0.016 0.254
Judged by GPT-4: SysType (T5) -0.001 0.014 0.927 0.008 0.019 0.688
Judged by GPT-4: SysType (T5+GPT) -0.027 0.011 0.014 0.003 0.015 0.827
Judged by GPT-4: Query Difficulty 0.001 0.003 0.653 -0.009 0.004 0.049
Judged by GPT-4: Query Length -0.011 0.002 0.000 0.006 0.003 0.027
Judged by GPT-4: Document Length 0.000 0.000 0.000 -0.000 0.000 0.000
Judged by GPT-4: GPT4 Query 0.026 0.013 0.049 -0.040 0.018 0.030
Judged by GPT-4: MN 0.001 0.002 0.732 0.000 0.003 0.952

to human evaluators (MAP: 𝛽 = 0.069, 𝑝 < 0.001; NDCG: 𝛽 = 0.207,
𝑝 < 0.001). This pattern indicates a general positive bias in GPT-
4’s assessments relative to human judgments. Moreover, GPT-4
exhibits a small but measurable preference for systems similar to
itself. Specifically, GPT-4 assigns slightly higher MAP scores to
GPT-4-based systems compared to other system types (interaction
𝛽 = 0.032, 𝑝 = 0.006). Conversely, GPT-4 judgments are associated
with a slight penalization on MAP scores for hybrid systems com-
bining T5 and GPT components (interaction 𝛽 = −0.027, 𝑝 = 0.014).

GPT-4’s evaluations are also sensitive to characteristics of the
input queries and documents. When GPT-4 acts as the evaluator,
longer queries correlate with a slight decrease in MAP scores (coef-
ficient = –0.011, 𝑝 < 0.001) but a slight increase in NDCG scores
(coefficient = 0.006, 𝑝 = 0.027), indicating that GPT-4’s scoring
behavior depends on the metric used. Additionally, GPT-4 tends
to assign higher MAP scores to queries generated by GPT-4 itself
(coefficient = 0.026, 𝑝 = 0.049), but lower NDCG scores for those
same queries (coefficient = –0.040, 𝑝 = 0.030). These mixed effects
demonstrate that GPT-4’s judgments vary with both query features
and evaluation metrics.

7 Conclusion
In this paper, we investigated the effect of synthetic data in con-
structing test collections for evaluation in IR. We analyzed the
differences between synthetic and human-generated queries and
judgments, showing that LLMs tend to produce longer queries
and assign higher relevance scores. Our experiments on system
rankings revealed that LLM-based systems are often overestimated
when evaluated on synthetic test collections, especially when syn-
thetic labels are used. Furthermore, our Linear Mixed-Effects model
shows that GPT-4 systematically gives higher MAP and NDCG
scores than human judges and exhibits bias toward systems and
queries similar to its own outputs. These findings highlight the
limitations of synthetic data for fair IR evaluation and underline the
importance of incorporating human oversight when using LLMs
for judgment generation.
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