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Although originally developed to evaluate sets of items, recall is often used to evaluate rankings of items, including those

produced by recommender, retrieval, and other machine learning systems. The application of recall without a formal

evaluative motivation has led to criticism of recall as a vague or inappropriate measure. In light of this debate, we relect on

the measurement of recall in rankings from a formal perspective. Our analysis is composed of three tenets: recall, robustness,

and lexicographic evaluation. First, we formally deine ‘recall-orientation’ as the sensitivity of a metric to a user interested

in inding every relevant item. Second, we analyze recall-orientation from the perspective of robustness with respect to

possible content consumers and providers, connecting recall to recent conversations about fair ranking. Finally, we extend

this conceptual and theoretical treatment of recall by developing a practical preference-based evaluation method based

on lexicographic comparison. Through extensive empirical analysis across multiple recommendation and retrieval tasks,

we establish that our new evaluation method, lexirecall, has convergent validity (i.e., it is correlated with existing recall

metrics) and exhibits substantially higher sensitivity in terms of discriminative power and stability in the presence of missing

labels. Our conceptual, theoretical, and empirical analysis substantially deepens our understanding of recall and motivates its

adoption through connections to robustness and fairness.
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1 Introduction

Researchers use ‘recall’ to evaluate rankings across a variety of retrieval, recommendation [126], and machine
learning tasks [40, 86, 88]. ‘Recall at � items’ (R� ) and R-Precision (RP) are popular metrics used for measuring
recall in rankings. Since the beginning of the ACM Conference on Recommender Systems, on average one third
of full papers measure recall in experiments (Figure 1). While there is a colloquial interpretation of recall as
measuring coverage (as it might be rightfully interpreted in set retrieval), the research community is far from a
principled understanding of recall metrics for rankings. Nevertheless, authors continue to informally refer to
evaluation metrics as more or less ‘recall-oriented’ or ‘precision-oriented’ without a formal deinition of what
this means or quantifying how existing metrics relate to these constructs [25, 27, 55, 60, 73, 74].

Given the prevalence of recall as a metric in recommender system research, understanding recall conceptually,
theoretically, and empirically is fundamental to sound evaluation. Indeed, the lack of a principled understanding
of or motivation for recall has caused some to question whether recall is useful as a construct at all. Herlocker
et al. [50] suggests that the sparse nature of recommendation data may make recall inappropriate. Cooper [22]
argues that recall-orientation is inappropriate because user search satisfaction depends on the number of items
the user is looking for, which may be fewer than all of the relevant items. Zobel et al. [130] refute several informal
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Fig. 1. Percentage of full papers published at the ACM Conference on Recommender Systems that measure recall in
experiments. Percentages are macro-averaged across years to control for growth in the number of full papers in the
conference proceedings. Details can be found in Appendix A.

justiications for recall: persistence (the depth a user is willing to browse), cardinality (the number of relevant
items found), coverage (the number of user intents covered), density (the rank-locality of relevant items), and
totality (the retrieval of all relevant items). So, while many ranking experiments compute recall metrics, precisely
what and why we are measuring remains unclear.

In this light, we approach the measurement of recall in rankings from a formal perspective, with an objective
of proposing a new interpretation of recall with precise conceptual and theoretical grounding. Our analysis is
composed of three interrelated tenets: recall, robustness, and lexicographic evaluation. First, we consider recall
an essentially contested construct [41, 53]: it is a high level construct believed to be important but with diferent,
conlicting interpretations, as suggested by Zobel et al. [130]. By adopting the interpretation of recall as inding the
totality of relevant items, we formally deine ‘recall-orientation’ as sensitivity to movement of the bottom-ranked
relevant item. Although simple, this deinition of recall connects to both early work in position-based evaluation
as well as recent work in technology-assisted review. Moreover, by formally deining recall orientation, we can
design a newmetric, total search eiciency, that precisely measures recall. Second, we consider robustness another
essentially contested construct, again with diferent, conlicting interpretations [32]. By adopting an interpretation
of robustness as the efectiveness for the worst-of user, we can connect it to our notion of recall-orientation. We
demonstrate that recallÐand totality speciicallyÐis aligned with worst-case robustness. Finally, we extend this
conceptual and theoretical treatment of recall by developing a practical preference-based evaluation method based
on lexicographic comparison. We present a conceptual relationship between recall, robustness, and lexicographic
evaluation in Figure 2. Through extensive empirical analysis across various retrieval and recommendation tasks,
we establish that our new evaluation method, lexicographic recall or lexirecall, is correlated with existing recall
metrics but exhibits substantially higher discriminative power and stability in the presence of missing labels.
While conceptually and theoretically grounded in notions of robustness and fairness, lexirecall pragmatically is
appropriate when we are concerned with understanding system behavior for users who are focused on inding
all relevant items in the same way that experiments adopt reciprocal rank as a high-precision metric. This paper,
by focusing on worst-case performance, also complements existing work that has focused on average case [29]
and best-case [28] preference-based evaluation. Our conceptual, theoretical, and empirical analysis substantially
deepens our understanding of recall as a construct and motivates its adoption through connections to robustness
and fairness constructs.
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Fig. 2. Both recall and robustness as a theoretical construct can be conceptualized in multiple ways [32, 130]. These two
constructs are equivalent when conceptualized as totality (recall) and worst-case analysis (robustness). Lexicographic recall
is located in this intersection.

2 Preliminaries

We begin by deining our core concepts and notation in order to provide a clear foundation for our analysis. While
many of these concepts will be familiar to those with a background in ranking evaluation, we adopt a speciic
mathematical framework that will be important when proving properties of recall, robustness, and lexicographic
evaluation.
We consider ranking systems that are designed to satisfy users1 with with some information need, broadly

construed. This information need may be speciic or vague, and may or may not be explicit even in the user’s own
mind (e.g. łentertain me for the eveningž can be considered an information need for home-page recommendations
on a video streaming service; łwhat happened yesterday that I should know about?ž for a daily e-mail of
recommended new articles from a news publisher). Although users in many recommendation scenarios may not
seem to have an information need, they do, at any point in time, have a latent order over items in the catalog.
This is true in relatively passive scenarios like radio-like streaming audio where a user, although not explicitly
expressing or thinking about their preferences, nevertheless reveals them through their consumption behavior.
While a user’s information need is never directly revealed to the ranking system, the user expresses an

observable request to the ranking system. A request can include information provided by the user either explicitly
(e.g., a query or question for text-based search; an application or site context for recommendation) or implicitly (e.g.,
geo-location for text-based search; engagement or session history for recommendation [61]) or both [102, 124].
A system attempts to satisfy an information need by ranking all of the items in a corpus D. A corpus might

consist of text documents (e.g., a web crawl) or cultural media (e.g., a music catalog). And so, if � = |D|, a ranking
system is a function that, given a request, produces a permutation of the � items in the collection. As such, the
space of possible system outputs is the set of all permutations of � items, also known as the symmetric group of
degree � or �� .

1We adopt user as a general term for searcher in the information retrieval context and content consumer in the multi-stakeholder recommen-

dation context.
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Fig. 3. Relevance Projection with Imputation. Given a set of relevant item ids R = {083, 107, 511, 668, 820, 977}, relevance
projection of an incomplete top-10 ranking � and relevant set R to a� × 1 vector of positions � . We also show the inverse
projection vector � of items at specific recall levels.

The objective of ranking evaluation is to determine the quality of a permutation � ∈ �� for the user. In the
remainder of this section, we will detail precisely how we do this.2

2.1 Relevance

The relevance of an item refers to its value with respect to a user’s information need. In this work, we focus
on binary relevance, an approach regularly used in information retrieval and recommender system literature,
especially when measuring recall.3 Let R ⊂ D be the set of items labeled relevant to the request where� = |R |.
Given a ranking � , then we deine � as the� × 1 vector where �� is the position of the �th ranked relevant

item in � . Each index � ∈ [1,�], referred to as the recall level, represents how many relevant items have been
found at position �� . We present an example of how to construct � in Figure 3. We will use � to represent the
� × 1 vector where �� ∈ D is the identity of the �th ranked relevant item. There are a total of

(�
�

)

unique � and
each unique � corresponds to a subset of � =�!(� −�)! unique permutations in �� .

2.2 Permutation Imputation

Many ranking systems only provide a ranking on the top �̃ ≪ � items, which may not include all relevant
items, leaving elements of � undeined. In order to use many metrics, especially recall-oriented metrics, we need
to impute the positions of the unranked relevant items. An optimistic imputation would place the unranked
relevant items immediately after the last retrieved items (i.e. �̃ + 1, �̃ + 2, . . .). Such a protocol would be susceptible

2While ranking does not cover all recommendation scenarios, it covers many, including personalized search, home-page recommendations,

related product recommendations, and social media timeline ranking, and is frequently considered in research; further, non-ranking interfaces

such as music or video streams may well be implemented as a inal selection or transformation of an underlying (partial) ranking, and

therefore better understanding of ranking evaluation may be applicable even to recommendation surfaces that do not directly expose the

ranking to the user.
3We discuss how our analysis extends in ordinal grades and preferences in Section 7.2.3.
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to manipulation by returning few or no items. Alternatively, we consider pessimistic imputation, placing the
unretrieved relevant items at the bottom of the total order over the corpus. For example, if a system returns only
three of six relevant items in the top �̃ at positions 2, 3, and 8, then we would deine � as,

� = 2, 3, 8
︸︷︷︸

top �̃

, � − 2, � − 1, �
︸          ︷︷          ︸

bottom � − �̃

Pessimistic imputation is a conservative placement of the unretrieved relevant items and is well-aligned with our
interest in robust performance. Moreover, it is consistent with behavior of metrics like rank-biased precision
[72], which implicitly applies an exposure of 0 for unretrieved relevant items (i.e., for large �, lim�→� �

� ≈ 0);
and average precision4, which implicitly applies an exposure of 0 for unretrieved relevant items (i.e., for large �,
lim�→�

1
�
≈ 0).5 We show an example of projection with imputation in Figure 3.

2.3 Measuring Efectiveness

When evaluating a ranking system, we consider two sets of important stakeholders: users and providers. Users
approach the system with information needs and requests and ultimately deine what is relevant. Providers
contribute items to the search systemwhich serve to satisfy users. Each item in the corpus is attributable, explicitly
or not, to a content provider. We include providers in our treatment to draw connections in existing work in the
fair ranking literature, which often focuses on providers as stakeholders [35]. In this section, we will characterize
a broad family of evaluation metrics for these two sets of users that will allow us, in subsequent sections, to
deine formal notions of recall and robustness.

2.3.1 Measuring Efectiveness for Users. For a ixed information need and ranking � , an evaluation metric is a
function that scores rankings, � : �� × D+ → R

∗ where D+ is set of all subsets of D excluding the empty set. An
evaluation metric, then, is a function whose domain is the joint space of all corpus permutations and possible
relevance judgments and whose range is a non-negative scalar value. We are speciically interested in a class of
metrics that can be expressed in terms of a summation over recall levels.

Deinition 2.1. Given a ranking � ∈ �� and relevant items R ∈ D+, a recall-level metric is an evaluation metric
deined as a summation over� recall levels,

� (�,R) =

�︁

�=1

� (�� )� (�,�) (1)

where � : Z+ → R
∗ is a strictly monotonically decreasing exposure function proportional to the probability that

the user reaches rank position � in their scan of the list; and � : Z+ × Z
+ → R

∗ is a metric-speciic normalization
function of recall level and size of R.

The product � (�� )� (�,�) is a decomposition of what Carterette refers to as a ‘discount function’ into an
explicit function that models exposure and another that addresses any recall normalization [12]. Within the set
of recall-level metrics, we are further interested in the sub-class of metrics that satisfy the following criteria for
‘top-heaviness’.

Deinition 2.2. We refer to a recall-level metric as top-heavy if, for � ∈ [0 . . �),

4As deined in trec_eval.
5Although recall is often normalized for top �̃ rankings by dividing by min(�̃,�) , this practice results in measuring precision instead of

recall for information needs where �̃ <�. In order to compare rankings of diferent lengths and to emphasize recall measurement, we focus

on imputed full rankings.
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�︁

�=1

� (�� )� (�,�) ≥

�︁

�=�+1

� (�� )� (� − �,� − �)

Top-heaviness indicates that, in the event that there are � unjudged, relevant items in positions above the
remaining� − � relevant items, the metric computed over all� items must be greater than or equal to the metric
value computed over only the� − � items. Because we deal with metrics that include functions of�, this is
not an obvious property, but one that will be important as we consider incomplete judgments and relationships
between possible users in Section 4.6

Top-heavy recall-level metrics are a precise subclass of discounted metrics, covering a broad class of existing
metrics such as average precision (AP), reciprocal rank (RR), normalized discounted cumulative gain (NDCG),
and rank-biased precision (RBP), where we deine the exposure and normalization as,

�AP (�) =
1

�
�AP (�,�) =

�

�

�RR (�) =
1

�
�RR (�,�) =

{

1 if � = 1

0 otherwise

�NDCG (�) =
1

log2 (� + 1)
�NDCG (�,�) =

(
�︁

�=1

1

log2 (� + 1)

)−1

�RBP (�) = (1 − �)��−1 �RBP (�,�) = 1

Beyond classic ranking metrics, top-heavy recall-level metrics include non-traditional metrics such as those based
on linear discounting (e.g., �lin (�) = 1 − �

�
). This results in a much broader class of metrics than those normally

considered, for example, in the formal analysis of ranking metrics [1, 38, 71]. As a result, while all top-heavy
recall-level metrics satisfy some formal properties of ranking evaluation metrics, large subsets of top-heavy
recall-level metrics may satisfy more. A detailed analysis of formal properties of top-heavy recall-level metrics
can be found in Appendix B. As mentioned before, we can contrast this with Carterette’s decomposition which
focuses on the decomposition of metrics into gain and discount components [12]. In our case, we do not model
gain, since we deal with binary relevance. Our exposure and normalization functions, then, precisely deine a
subset of Carterette’s discount functions that do not it into his metric taxonomy since they do not consider recall
normalization [12].

We focus on this class of metrics in order to prove properties of robustness in Section 4.

2.3.2 Measuring Efectiveness for Providers. For content providers, we deine the utility they receive from a
ranking � as a function of their items’ cumulative positive exposure, deined as exposure of a provider’s relevant
content.7 Let R′ ⊆ R be the subset of relevant items belonging to a speciic provider. Since � captures the
likelihood that a user inspects a speciic rank position, we can compute the cumulative positive exposure as,

�� (�,R,R
′) =

�︁

�=1

� (�� )I(�� ∈ R′) (2)

6For more information on the relationship between incomplete judgments and metric stability, see [10, 91, 111].
7We do not consider provider utility when none of their associated items are relevant to the user’s information need. Although not covering

situations where providers beneit from any exposure (including of nonrelevant content), it is consistent with similar deinitions used in the

fair ranking literature [30, 100].

While we adopt a cumulative exposure model in this work, alternative notions of provider efectiveness are possible. For example,

normalizing by the number of relevant items contributed | R′ | would emphasize providers who contribute more content.

ACM Trans. Recomm. Syst.
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where� and � are based on R. Unless necessary, we will drop the subscript � from � for clarity.

2.4 Evaluation Method Desiderata

Because there is no consensus on a single approach to validate a new evaluation method, we assemble desired
theoretical and empirical properties of a method drawn from work in information retrieval and recommender
system evaluation [90, 111] and measurement theory [53, 121].

• Validity
ś Content validity.

∗ Is the evaluation theoretically related to the higher level concept? (Sections 4.1, 4.2)
∗ Is the evaluation better correlated with the higher level concept than existing metrics? (Section 4.3)

ś Convergent validity. Is the evaluation method empirically correlated with existing methods for measur-
ing the same higher level concept? (Section 6.2.1)

ś Discriminant validity. Is the evaluation method empirically uncorrelated with existing methods for
measuring diferent higher level concepts? (Section 6.2.1)

• Sensitivity
ś Decision sensitivity. Is the evaluation method better able to distinguish between rankings compared to
existing methods? (Section 6.2.2)

ś System sensitivity. Is the evaluation method better able to distinguish between rankers compared to
existing methods? (Section 6.2.3)

• Reliability
ś Stable validity. Is the evaluation method stable when labels are missing compared to existing methods?
(Section 6.2.4)

ś Stable sensitivity. Does the evaluation method maintain sensitivity when labels are missing compared
to existing methods? (Section 6.2.4)

Throughout this article, when we assess or compare evaluation methods, we will focus on these properties.
We note that the evaluation methods we develop in Sections 3 and 5 measure population-based properties

using worst-case analysis. This means that, for each request, these methods consider a population of users
that tend to emphasize under-represented behaviors and intents. We contrast this with traditional metrics that
model individual users and emphasize well-represented behaviors and intents. This means that validation with,
for example, behavioral feedback [13] or user studies [93] is not possible. In lieu of empirical validation, we
emphasize both conceptual and theoretical properties of our evaluation methods, grounding them in the relevant
work in philosophy and economics. This normative design of an evaluation method is consistent with recent
work in the recommender system community [39, 115ś117].

3 Recall

As mentioned in Section 1, the description of ranked ranking metrics as ‘recall-oriented’ remains poorly deined,
leaving the formal analysis of metrics for recall-orientation diicult. From a technical point of view, some work
considers recall-orientation to be a binary criterion, dependent on whether a metric includes the recall base (i.e.,
R) in order to be computed [55, 89]. This would include metrics that compute set-based recall at some rank cutof
[24, 109] as well as metrics like AP and NDCG. Using a set-based recall metric is particularly well-suited for
recall-orientation in early stages of multi-stage ranking [63, 73]. A binary notion of recall-orientation does not
capture that somemetrics may be more recall-oriented than others. This is captured, in part, by references to recall-
orientation as related to the depth in the ranking considered by the user [27]. More frequently, authors appeal to
metrics like AP and R1000 as being recall-oriented without clear discussion of what this means [25, 47, 60, 74]. On
the other hand, both Mackie et al. [64] and [66] refer to R1000 as recall-oriented but AP being precision-oriented.

ACM Trans. Recomm. Syst.
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In light of the lack of consensus on recall-orientation, in Section 3.1, we propose a new quantitative view of
recall-orientation based on how sensitive a metric is for a user interested in inding every relevant item. This
allows us to see recall-orientation along a spectrum and compare the degrees of recall-orientation of diferent
metrics. In Section 3.2, based on this deinition, we derive a new recall metric, total search eiciency.

3.1 Metric Orientation

We are interested in more precisely deining precision and recall as constructs to be measured in ranking
evaluation. Although most evaluation metrics colloquially capture some aspects of both precision and recall,
understanding the sensitivity to each remains vague. We can address this vagueness by approaching precision
and recall as two extremes of recall requirements. At one extreme, precision as a construct relects the satisfaction
of a user who only needs exactly one relevant item, the minimum amount of retrievable content. We might ind
this in domains like web search. At the other extreme, recall as a construct relects the satisfaction of a user
who needs every relevant item, the maximum amount of retrievable content. Herlocker et al. [50] call this the
‘ind all good items’ tasks; Zobel et al. [130] refers to this as the totality interpretation of recall, found in many
technology-assisted review domains. Indeed, this perspective is supported by tasks like recommender systems
for scholarly literature reviews; evaluation programs like the TREC Total Recall Track [85] and patent search
[62]; and by metrics like ‘position of the last relevant item’ [131].
We begin by deining the precision valence of a ranking of � items as how eiciently a user can ind the irst

relevant item. For a ixed request, assume that we have� relevant items. The ideal precision valence occurs
when the irst relevant item is at rank position 1. The worst precision valence occurs when the irst relevant
item is at rank position � −� + 1, just above the remaining� − 1 relevant items. Similarly, we refer to the recall
valence of a ranking as how eiciently a user can ind all of the relevant items. The ideal recall valence occurs
when the last relevant item is at position� (i.e., below the other� − 1 relevant items) and the worst precision
valence when it is at position �.

In order to deine the precision orientation of a metric, we measure the diference in the best-case precision
valence and worst-case precision valence for a given metric. Although there is only one arrangement of positions

of relevant items where the top-ranked item is at position � −� + 1, there are
(�−1
�−1

)

arrangements of positions of
relevant items where the top-ranked item is at position 1. In order to control for the contribution of higher recall
levels, we can consider, for the best-case precision valence, the ranking with a relevant item at the irst position
and the remaining � − 1 relevant items at the bottom of the ranking. Precision orientation, then, measures
sensitivity for a user interested in one relevant item. We depict this graphically in Figure 4a. Similarly, in order to
deine the recall orientation of a metric, we measure the diference in the best-case recall valence and worst-case
recall valence for a given metric. Although there is only one arrangement of positions of relevant items where

the bottom-ranked item is at position�, there are
(�−1
�−1

)

arrangements of positions of relevant items where the
bottom-ranked item is at position �. In order to control for the contribution of lower recall levels, we can consider,
for the worst-case recall valence, the ranking with a relevant item at position � and the remaining� − 1 relevant
items at the top of the ranking. Recall orientation, then, measures sensitivity for a user interested in all relevant
items. We depict this graphically in Figure 4b.

In order to understand the intuition behind this deinition of metric orientation, we can think about the recall
requirements of precision-oriented or recall-oriented users. The prototypical precision-oriented user is satisied
by a single relevant item. Precision-orientation quantiies how sensitive a metric is at measuring the best-case
and worst-case for this precision-oriented user. The prototypical recall-oriented user is only satisied when they
ind all of the relevant items. Recall-orientation quantiies how sensitive a metric is at measuring the best-case
and worst-case for this recall-oriented user. These prototypical users intentionally represent extremes in order to

ACM Trans. Recomm. Syst.
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(b) Recall.

Fig. 4. Metric orientation. Each ranking � of ten items represented with a vector of cells ordered from top to botom with
shaded cells representing relevant items R. Precision orientation (let) measures the degradation in a metric when the highest
ranked relevant item is moved to the botom of the ranking while holding all other positions fixed. Recall orientation (right)
measures the degradation in a metric when the lowest ranked relevant item is moved to the botom of the ranking while
holding all other positions fixed. We measure the precision and recall orientation of a metric � by the diference between
� (�,R) − � (� ′,R).

characterize existing metrics and control for any contribution from other recall requirements (e.g., those greater
than one for precision and less than� for recall).

Figure 5 shows the recall and precision orientation for several well-known evaluation metrics for a ranking of
� = 105 items. Because both precision and recall orientation are functions of the number of relevant items, we
plot values for� ∈ [1 . . 15].
In terms of precision orientation, the ordering of metrics follows conventional wisdom. RR is often used for

known-item or other high-precision tasks where the user is satisied by the irst relevant item. Across all values of
�, RR dominates other metrics. NDCG, often used for evaluating both top-� recommendations and web search
results, is the next most precision-oriented metric.8 AP, ‘recall at 1000’ (R1000), and R-precision (RP) all have the
same precision-orientation and are dominated by NDCG. Rank-biased precision (RBP) dominates NDCG and AP
once we reach a modest number of relevant items. Both RR and RBP are not sensitive to the number of relevant
items because neither is a function of�.

In terms of recall orientation, the ordering of metrics follows conventional wisdom in the information retrieval
and recommender systems community. R1000, AP, and RP all dominate other metrics for all values of�. This family
of metrics is followed by metrics often used for precision tasks, NDCG and RBP. RR, the least recall-oriented
metric, only considers the top-ranked relevant item and shows no recall orientation unless there is only one
relevant item. We should note that, except for RR, the recall orientation decreases with the number of relevant
items because all of these metrics aggregate an increasing number of positions as� increases. When evaluating
over a set of requests with varying values of�, mis-calibrated recall valences may result in requests with lower
values of� dominating any averaging.

In this analysis, RR is a precision-oriented ‘basis’ metric insofar as it is only dependent on the position of the
highest-ranked relevant item. We are interested in designing a symmetric recall-oriented ‘basis’ metric that only
depends on the position of the lowest-ranked relevant item. We depict this desired metric as the red line in Figure

8We note that the classiication of NDCG as precision-oriented could be inluenced by diferent discounting functions, as suggested by Jeunen

et al. [54].
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(a) Precision.
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(b) Recall.

Fig. 5. Metric orientation of ranking metrics of 105 items with� ∈ [1 . . 15] relevant items. The vertical axis reflects, for
� ∈ [1, 15], the change in metric value when (a) moving top-ranked item from position 1 to position � −� + 1 or (b) moving
botom-ranked item from position� to position �. The values for TSE (Equation 3) are scaled by the lower and upper bound
given a fixed� and therefore apply to any exposure model. See Figure 4 for details. This figure best rendered in color.

.

5. Traditional recall-oriented metrics do not satisfy this since they depend on the position of the higher-ranked
relevant items, especially as� grows. In this paper, we identify the missing metric that captures recall-orientation
while being well-calibrated across values of�.

3.2 Total Search Eficiency

Although metrics such as AP are often referred to as ‘recall-oriented’, in this section, we focus on metrics that
explicitly deine recall as a construct. Such recall metrics for ranking systems come in two lavors.9 The irst
lavor of recall metrics measures the fraction of relevant items found after a user terminates their scan of the
ranked list. Metrics like R1000 and RP use a model of search depth to simulate how deep a user will scan. We can
deine exposure and normalization functions for R� and RP,

�R� (�) = I(� ≤ �) �R� ( �,�) =
1

�

�RP (�) = I(� ≤ �) �RP ( �,�) =
1

�

Note that, although we decompose these metrics using the notation of recall-level metrics, neither of these
exposure functions strictly monotonically decrease in rank, so they are not recall-level metrics.

9We exclude set-based metrics used in set-based retrieval or some technology-assisted review evaluation [23, 59], since they require systems

to provide a cutof in addition to a ranking.
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The second lavor of recall metrics measures the efort to ind all� relevant items. Cooper [22] refers to this as
a the Type 3 search length and is measured by,

SL3 (�,R) = �� −�

rank
= ��

Similarly, Zou and Kanoulas [131] use ‘position of the last relevant item’ to evaluate high-recall tasks. By contrast,
Rocchio [84] proposed recall error, a metric based on the average rank of relevant items,

RE(�,R) =
1

�

�︁

�=1

�� −
� + 1

2

rank
=

�︁

�=1

��

Recall error can be sensitive to outliers at very low ranks, which occur frequently in even moderately-sized
corpora [65].

Inspired by Cooper’s SL3, we deine a new recall-oriented top-heavy recall-level metric by looking at exposure
of relevant items at highest recall level (i.e. � =� in Equation 1). We can deine a recall-oriented metric based on
any top-heavy recall-level metric by replacing its normalization function with the following,

�SL3 (�,�) =

{

1 if � =�

0 otherwise

We refer to this as the eiciency of inding all relevant items or the total search eiciency, deined as,

TSE� (�,R) =

�︁

�=1

� (�� )�SL3 (�,�) (3)

= � (��)

where the speciic exposure function depends on base top-heavy recall-level metric (e.g., AP, NDCG). TSE, then,
is a family of metrics parameterized by a speciic exposure function with properties deined in Section 2.3.1.
Although computing TSE� depends on the exposure model � , unless necessary, we will drop the subscript for
clarity. We demonstrate the precision and recall orientation of TSE in Figure 5. Since TSE with an AP base
behaves identically to RR, except from the perspective of recall-orientation, we consider it RR’s recall-oriented
counterpart. In the next section, we will connect this notion of recall to concepts of robustness and fairness.

4 Robustness

In the context of a single ranking, we are interested in measuring its robustness in terms of its efectiveness for
diferent possible users who might have issued the same request.10 In retrieval, this might occur when multiple
users issue the same text-based query. In recommendation, this might occur when multiple users share the
same engagement or session history, for example in cold-start or low-data situations. In both retrieval and
recommendation, even a single user may have multiple intents depending on the context (e.g., an item may

10Robustness in the information retrieval community has traditionally emphasized slightly diferent notions from our ranking-based

perspective. For example, the TREC Robust track emphasized robustness of searcher efectiveness across information needs, focusing evaluation

on diicult queries [112]. Similarly, risk-based robust evaluation seeks to ensure that performance improvements across information needs are

robust with respect to a baseline [18, 118]. Meanwhile, Goren et al. [43] proposed robustness as the stability of rankings across adversarial

document manipulations. In the context of recommender systems, robustness has analogously focused on robustness of utility across users

[120, 122] and stability of rankings across adversarial content providers [70].
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Table 1. Ambiguity in requests. In both retrieval and recommendation tasks, multiple users or the same user at diferent
times may consider diferent items relevance.

request relevance

task implicit explicit user 1 user 2

web retrieval - query=‘salsa’ recipe dance

map retrieval location=‘NYC’ query=‘restaurant’ vegetarian Korean

movie recommendation watched=[‘Jaws’, ‘Piranha’] - nautical horror 1970s horror

music recommendation saved=[‘Black Sabbath’, ‘Bach’] query=‘study music’ metal classical

be relevant to a user when they are studying versus when they are relaxing). We present additional examples
in Table 1 that demonstrate situations where data sparsity in the request can conceal two users with diferent
intents. The concept of robustness across users or user-contexts is related to work in search engine auditing that
empirically studies how efectiveness varies across diferent searchers issuing the same request [67]. In our work,
we deine robustness as the efectiveness of a ranking for the worst-of user (or user-context) who might have
issued a request.
Underlying our notion of robustness is a population-based perspective on ranking evaluation. Classic efec-

tiveness measures can be interpreted as expected values over diferent user populations deined by diferent
browsing behavior [12, 83, 92]. For example, Robertson [83] demonstrated that AP can be interpreted as the
expected precision over a population of users with diferent recall requirements. More generally, Carterette
[12] demonstrated this for a large class of metrics. We can contrast this with online evaluation production
environments where systems observe individual user behavior and do not need to resort to statistical models to
capture diferent user behavior. So, just as recent work in the fairness literature disaggregates evaluation metrics
to understand how performance varies across groups [35, 37, 67, 76], we can disaggregate traditional evaluation
metrics to understand how performance varies across implicit subpopulations of users or providers.

From an ethical perspective, when considered the expected value over a population of users, traditional metrics
make assumptions aligned with average utilitarianism, where the expected utility over some population is used
to make decisions [99]. While this reduces, in production environments, to averaging a performance metric
across all logged requests, in oline evaluation, this is captured by the distribution underlying the metric, as
suggested by Robertson [83] and Carterette [12]. This means that if there are certain types of user behavior that
are overrepresented in the data (online evaluation) or the user model (oline evaluation), they will dominate
the expectation. Users whose behaviors or needs have low probability in the data or the user model will be
overwhelmed and efectively be obscured from measurement.
For robustness, instead of measuring the efectiveness of a system by adopting average utilitarianism and

computing the expected performance over users, we can summarize the distribution of performance over
users using alternative traditions based on distributive justice. This follows recent literature in value-sensitive,
normative design of evaluation metrics [39, 115ś117]. Speciically, inspired by related work in fair classiication
[48, 49, 68, 98], we can adopt Rawls’ diference principle which evaluates a decision based on its value to the
worst-of individual [81]. In the context of a single ranking, this means the worst-of user or provider. As such,
our worst-case analysis is aligned with Rawlsian versions of (i) equality of information access (for users) and
(ii) fairness of the distribution of exposure (for providers). Even from a utilitarian perspective, systematic under-
performance can cost ranking system providers as a result of user attrition [48, 69, 125] or negative impacts to a
system’s brand [104].
Although motivated by similar societal goals (e.g., equity, justice), existing methods of measuring fairness in

ranking are normatively very diferent from worst-case robustness. First, the majority of fair ranking measures
emphasize equal exposure amongst providers [35] and is based on strict egalitarianism, a diferent ethical
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foundation than Rawls’ diference principle [80]. Pragmatically, in order to satisfy this within a single ranking,
authors restrict analysis to stochastic ranking algorithms [30, 100] or amortized evaluation [4, 5]. Second, fair
ranking analyses that focus on users tend be restricted to disaggregated evaluation, without reaggregating [37, 67].
This is diferent from our focus on disaggregating and then summarizing the distribution of efectiveness with
the worst-of user. Most importantly, while most fairness work looks at either users or providers, in our analysis,
we demonstrate that both worst-case user and provider robustness are simultaneously captured by recall, as
measured by TSE.

4.1 User Robustness

Given a ranking � , we would like to measure the worst-case efectiveness over a population of possible users.

4.1.1 Possible Information Needs. In this section, we describe how relevance, as traditionally used, relects the
set of possible user information needs. To see why, consider the notion of relevance described in Section 2.1. This
is often referred to as topical relevance, the match between an item and the general topic of the user [7, 21]. By
contrast, Harter [45] uses the expression psychological relevance to refer to the extent to which, in the course
of an information access session, an item changes the user’s cognitive state with respect to their information
need. Otherwise relevant items may stop being useful as a user’s anomalous state of knowledge changes [3].
Moreover, as Harter [46] notes, because users approach a system from a variety of backgrounds (i.e., states of
knowledge), the same request might ind quite diferent utility from two topically relevant items in the corpus.
Indeed, researchers have observed variation in utility in controlled experiments [113, 114] as well as production
environments [31, 106].

In the context of information retrieval, the notion of topical relevance can be interpreted as the potential utility
of a document to the user. A topically relevant document may be psychologically nonrelevant for a number of
reasons. First, a user may already be familiar with a judged relevant item in the ranking, which, in some cases,
will, for that user, make the item nonrelevant. For example, in the context of a literature review, a previously-read
relevant article may not be useful [6, 7]. Second, even if editorial relevance labels are accurate (i.e. all users would
consider labeled items as relevant), the utility of items may be isolated to a subset of R. For example, in the
context of decision support, including legal discovery and systematic review, topical relevance is the irst step in
inding critical information [20]. In some cases, there will be a single useful ‘smoking gun’ document amongst
the larger set of relevant content. In other cases, a single subset of relevant documents will allow one to ‘connect
the dots.’ In a patent context, Trippe and Ruthven [110] describe situations where there is risk to missing items
that may turn out to be critical to assessing the validity of a patent. So, while topical relevance is important, it
only relects the possible usefulness to the user [107].

Similarly, in the context of recommendation, the notion of topical relevance can be interpreted as the potential
utilityÐbut not the psychological relevance or desirabilityÐof an item to the user. So, while a particular item
may be of interest to a user in general, at any one point in time, it may be undesired for any number of reasons.
First, the context of a user can afect whether a particular item is desired. For example, in music recommendation,
a user may be interested in bluegrass music in many contexts but, while studying, may prefer ambient music.
Second, as with information retrieval, the desirability of a previously-consumed relevant item may degrade due
to order efects. For example, in music recommendation, consider a user who listened to a speciic relevant song
� . There are two possible efects. On the one hand, satiation [58] means that the user may not want to listen to �
immediately again, making it no longer relevant to that user. Or, obsessive listening [19, 119] means that the user
may want to listen to � over again, making other otherwise relevant songs no longer relevant to that user.
So, from the perspective of relevance, R should be considered the union of psychologically relevant items

over all possible states of knowledge a user might have when approaching the system. Indeed, multiple authors
describe topical relevance as necessary but not suicient for psychological relevance [7, 21, 87]. These papers
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Fig. 6. Population of possible usersU based on all combinations of relevant items from R for a system ranking � .

suggest that rather than seeing a ranking system as acting to directly provide psychologically relevant items, it
provides topically relevant items that are candidates to be scanned for psychologically relevant items by the user
[7]. In light of this discussion, instead of considering any item in R as deinitely satisfying the user’s information
need, we consider it as only having a nonzero probability of satisfying the user’s information need.

While the concept of diversity [15, 94], common to both recommendation and retrieval tasks, intends to support
multiple information needs, they do not capture granular, item- or document-level needs. For example, measuring
book recommendation diversity along the language dimension may detect poor performance for a group of users
interested in Spanish language books, it will not be efective at detecting poor performance for Spanish language
books unfamiliar to a particular user.

Given that binary relevance relects the possibility of psychological relevance, we are interested in considering all
users such that the union of their relevance criteria is R. We can enumerate all such users over items as U = R+,
the power set of R excluding the empty set. This means that, for a given request, we have�+

= |U| = 2� − 1
possible users interested in at least one relevant item (Figure 6). This conservative deinition ofU captures all
possible satisiable users.

4.1.2 Robustness Across Possible Information Needs. Given a set of possible information needsU based on R, we
deine the robustness of a ranking � as the efectiveness of the ranking for the worst-of user,

WC� (�,R) = min
�∈U

� (�,�) (4)

This is close to the notion of robustness proposed by Memarrast et al. [68], who consider a worst-case user for
whom relevant items have a marginal distribution of features that matches the distribution in the full training set.
In comparison, our analysis considers the full set of worst-case situations, including those that do not match the
training data.

One problem with this deinition of robustness is that, because�+ is exponential in�, computing the minimum
is impractical even for modest�. Fortunately, using the properties of top-heavy recall-level metrics, we can
prove that,

WC� (�,R) = TSE(�,R) (5)

In other words, the worst-of user is the one associated with �� , the lowest-ranked relevant item. We present a
proof in Appendix C.1. This result implies that recall-orientation captures the utility of a ranking for the worst-of
user.
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Table 2. Agreement with WC� (�,R) < WC� (�
′,R). Probability of agreement over 10,000 simulated queries and pairs of

random rankings for various corpus sizes. For each query, we selected� ∼ � (5, 50) relevant items. We include the fraction
of rankings tied underWC� (�,R) = WC� (�

′,R). The values for TSE apply to any exposure model.

� tied TSE R@1000 RP AP NDCG random

103 0.012 1.000 0.000 0.285 0.541 0.535 0.492
104 0.001 1.000 0.420 0.077 0.552 0.549 0.497
105 0.000 1.000 0.179 0.008 0.554 0.555 0.498
106 0.000 1.000 0.026 0.001 0.547 0.554 0.499

4.2 Provider Robustness

Providers are individuals who contribute content to the ranking system’s catalog D. Given a ranking � , we
would like to measure the worst-case efectiveness over a population of possible providers.

4.2.1 Possible Provider Preferences. Just as with information needs, each ranking consists of exposure of multiple
possible providers. Consider the domains like job applicant ranking systems or dating platforms, where each item
in the catalog is associated with an individual person. We assume that each relevant provider � ∈ R is interested
in its cumulative positive exposure in the ranking (Section 2.3.2), � (�,R, {�}). In the more general case, providers
can possibly be associated with multiple relevant items in R. This might occur if a creator contributes multiple
items to the catalog (e.g. multiple songs, videos, documents); or, a provider may aggregate content from multiple
individual creators (e.g. publishers, labels). Even if we have metadata attributing groups of items to speciic
providers or creators, their preferences for exposure of those items may be unobserved. Provider preferences can
themselves be complex, covering a broad set of commercial, artistic, and societal values [33, 44].
Given the uncertainty and ambiguity over providers and their preferences, as with information needs, we

can consider the full set of latent providers and their preferences, V = R+ to relect the set of possible provider
preferences.

4.2.2 Robustness Across Possible Provider Preferences. Just as with users, we are interested in the utility of the
worst-of provider. In the simple case where each provider is associated with a single item in R, because exposure
monotonically decreases with rank position, we know that the worst-of provider will be the one at the lowest
rank; this is exactly TSE(�,R). This is similar to earlier provider fairness deinition [128]. More generally, if, like
information needs, we consider V = R+, we deine the worst-of provider as,

WC� (�,R) = min
�∈V

� (�,R, �) (6)

Given this deinition, we can show that TSE is equal to the utility of the worst-case provider (proof in Appendix
C.1).

Together, the theoretical results in Sections 4.1 and 4.2 provide a new interpretation of recall from the perspective
of potential subpopulations of content consumers and providers participating on the platform. Worst-case analysis
speciically connects naturally to Zobel et al.’s notion of totality [130].

4.3 Robustness and Existing Metrics

We have demonstrated that whenever WC� (�,R) < WC� (�
′,R), then TSE(�,R) < TSE(� ′,R). In order to

understand the relationship between other metrics and worst-case performance, we simulate 10,000 requests by
sampling 10,000 pairs of rankings � and � ′. We can then compute the evaluation metric for each ranking and com-
pare � (�,R) < � (� ′,R) with WC� (�,R) < WC� (�

′,R). We conduct this simulation for � ∈ {103, 104, 105, 106}
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Fig. 7. Dependence between �1 and �� . The gray region indicates the possible values of each.

and present results in Table 2. We observe that, while TSE has perfect sign agreement with WC� , other recall-
oriented metrics have worse agreement than random, largely because they only look at a preix of � . The sign
agreement of AP and NDCG is slightly better than random for two reasons. First, their aggregation (Equation 1)
includes �� and will subtly afect the value, despite making a small contribution to the total sum. Second, ��
values depend on each other because � is a permutation. In Figure 7, we compare the possible joint values of
�1 and �� . This means that we should expect there to be some dependence between purely precision-oriented
metrics (e.g. RR) and purely recall-oriented metrics (e.g. TSE). That said, AP and NDCG agree less than TSE
because their aggregation includes the positions of relevant items above �� . In whole, this result suggests that,
even compared to traditional recall metrics, TSE is better able to measure the robustness of a ranking.

5 Lexicographic Evaluation

In Section 3, we deined recall-orientation from the perspective of users interested in inding the totality of
relevant items and then proposed a new metric, TSE, based on this interpretation. In Section 4, we demonstrated
how TSE measures the worst-case utility for multiple deinitions of users and providers, connecting it to notions
of robustness and fairness, through Rawls’ diference principle. In this section, we will further develop the fairness
perspective by combining recent work in preference-based evaluation with classic work in social choice theory,
improving the nuance in worst-case analysis and allowing it to be useful as an evaluation tool. We will begin
by discussing the practical limitations of TSE for evaluation (Section 5.1) before developing a preference-based
evaluation method derived from social choice theory that generalizes TSE and improves its practical use (5.2).

5.1 Low Sensitivity of Total Search Eficiency

Althoughmeasuringworst-case performance and, as a result, Rawlsian fairness, TSEmay not satisfy our desiderata
for an evaluation method (Section 2.4). To understand why, consider two rankings � and � ′ for the same request.
When comparing a pair of systems, we are interested in deining a preference relation � ≻ � ′. The worst-case
preference � ≻WC � ′, is deined as,

� ≻WC � ′ ↔ min
�∈U

� (�,�) > min
�∈U

� (� ′, �) (7)
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Fig. 8. Fraction tied rankings as retrieval depth �̃ decreases for � = 250, 000 and 25 requests. For each query, we selected
� ∼ � (5, 50) relevant items. This figure best rendered in color.

We know from Section 4.1.2 that this can be eiciently computed as TSE(�) > TSE(� ′). Unfortunately, in
situations where the worst-of user is tied (i.e. min�∈U � (�,�) = min�∈U � (� ′, �)), we cannot derive a preference
between � and � ′. Because we assume that unretrieved items occur at the bottom of the ranking and because
most runs do not return all of the relevant items, an evaluation based on TSE will observe many ties between
� and � ′, limiting its efectiveness at distinguishing runs and use for system development [11]. In Figure 8,
we simulated random pairs of rankings of 250,000 items and computed the number of metric ties for a variety
of retrieval cutofs. We observe that R1000 and RP both have a large number of ties across all retrieval depths.
Despite having few ties for very deep retrievals, TSE quickly observes many ties. This is due to our conservative
permutation imputation method (Section 2.2). We can compare all of these measures to AP, which exhibits high
sensitivity across most cutofs. In this section, we will improve the sensitivity of TSE to be comparable to AP
using methods from social choice theory.

5.2 Lexicographic Recall

We can address the lack of sensitivity of TSE by turning to recent work on preference-based evaluation [17, 28, 29].
As mentioned earlier, in many evaluation scenarios, our objective is to compute � ≻ � ′. Inmetric-based evaluation,
we compute this preference by irst computing the value of an evaluation metric for each ranking. That is,

� (�) > � (� ′) =⇒ � ≻ � ′ (8)

Preference-based evaluation [28, 29] is a quantitative evaluation method that directly computes the preference
between two rankings � and � ′ without irst computing an evaluation metric. Diaz and Ferraro [29] and Diaz
[28] show that preference-based evaluation can achieve much higher statistical sensitivity compared to standard
metric-based evaluation.
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We can convert TSE into a much more sensitive preference-based evaluation by returning to our discussion of
fairness and robustness. In the context of social choice theory, the number of ties in Rawlsian fairness can be
addressed by adopting a recursive procedure known as leximin, originally proposed by Sen [95]. Consider the
problem of distributing a resource to� individuals, in our case users or providers. Further consider two diferent
allocations � and � represented by two� × 1 vectors where �� is the amount of resource allocated to the �th
highest ranked individual, similarly for �. In other words, � and � are the resource allocations in decreasing order.
Given these two allocations, we begin by inspecting the allocation to the lowest-ranked items, as we did with
Rawlsian fairness. If �� > �� , then the bottom-ranked item of � is better of and � ≻ �; if �� < �� , then the
bottom-ranked item of � is better of and � ≺ �; otherwise, the bottom-ranked items are equally well-of and we
inspect the position of the next lowest item,� − 1. If ��−1 > ��−1, then we say � ≻ �; if ��−1 > ��−1, then we
say � ≺ �; otherwise, we inspect the position of the next lowest item� − 2. We continue this procedure until we
return a preference or, if we exhaust all� positions, we say that we are indiferent between the two rankings.
Formally,

� ≻leximin � ↔ �� > �� (9)

where � = max{ � ∈ [1 . . �] : �� ≠ � � }. We show an example of this process in Figure 9. This way of comparing
rankings generates a total lexicographic ordering over vectors of the same dimensionality and is often used in
the fairness literature to address ties when adopting Rawls’ diference principle.11

We can use leximin to deine the lexicographic recall or lexirecall preference between � and � ′. For a ixed
request and ranking � , let � be the�+ × 1 vector of metric values for U sorted in decreasing order. In other
words, �� = � (�,�� ), where �� is the user with the �th-highest metric value. We deine � ′ equivalently for � ′.
Lexicographic recall is deined as,

� ≻LR � ′ ↔ � ≻leximin �
′ (10)

Using lexirecall, we can deine a ordering over unique rankings, which addresses the ties observed in TSE.
Although operating over U grounds our evaluation in possible user information needs, scoring and ranking

�+ subsets of R can be computationally intractable. So, just as we demonstrated that we only need to inspect the
position of the last relevant item to compute ≻WC, we can demonstrate that we only need to compare the rank

11For further discussion of the connection between Rawls’ diference principle and leximin, see [26, 57, 75, 96, 97].
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Table 3. Probability of a metric tie Pr(� =� � ′) for randomly sampled permutations and� = 10.

� TSE R1000 RP AP LR

103 0.005 1.000 0.825 0.000 0.000
104 0.001 0.313 0.980 0.000 0.000
105 0.000 0.826 0.998 0.000 0.000
106 0.000 0.980 1.000 0.000 0.000

positions of the relevant items to compute � ≻LR � ′ (proof in Appendix C.2) and, therefore,

� ≻LR � ′ ↔ �� < �′� (11)

where � = max{ � ∈ [1 . . �] : �� ≠ �′� }. Moreover, although deined as a user-oriented metric, we can also

demonstrate that this results in provider leximin as well (proof in Appendix C.2),
We can better understand lexirecall by returning to our discussion of robustness in Section 4. While TSE

provided one way to distinguish robustness of two rankings, it is very insensitive and unlikely to be of practical
use. In order to address this, we adopted leximin, a well-studied method for addressing insensitivity in applying
Rawls’ diference principle. That said, lexirecall is still a measure of robustness. A lexirecall preference is simply
claiming that one ranking is more fair or more robust than another. Over a population of requests, then, we can
compute the probability that one system’s rankings are fairer or more robust than another.

5.3 Sensitivity of Lexicographic Recall

We can demonstrate the higher sensitivity of lexirecall through simulation and analysis of the total space of
permutations. In Figure 8, we demonstrated that, for a set of random paired rankings, the number of ties was
high for traditional metrics and grew quickly for TSE as the cutof �̃ decreased. Figure 8 also includes lexirecall,
which exhibits substantially fewer ties than traditional metrics and TSE. Independent of simulation, we are also
interested in the probability of a tie over for randomly sampled pairs of complete rankings �, � ′ ∈ �� (i.e. �̃ = �).
We can derive these probabilities (see Appendix E) as functions of�, �, and any parameters of the metric (e.g. �),

Pr(� =TSE � ′) =

(

�

�

)−2 �︁

�=�

(

� − 1

� − 1

)2

Pr(� =R� � ′) =

(

�

�

)−2 �︁

�=0

(

�

�

)2 (
� − �

� − �

)2

Pr(� =RP �
′) =

(

�

�

)−2 �︁

�=0

(

�

�

)2 (
� −�

� − �

)2

Pr(� =LR � ′) =
�!(� −�)!

�!

To better understand the relationship between these probabilities, we display probabilities of ties for several
retrieval depths in Table 3. Although Figure 8 demonstrated that TSE exhibited poor sensitivity when �̃ < �,
it is much more sensitive for complete rankings, in part because random complete rankings are less likely to
share �� than imputed rankings. Both traditional recall metrics exhibit many more ties, especially as the retrieval
depth grows. Amongst methods, lexirecall and AP demonstrate the few or no ties across corpus sizes. Table 4
presents the same results for varying numbers of relevant items. The results are consistent with Table 3, where
traditional recall metrics exhibit a large number of ties, which decreases slowly with the number of relevant
items. By comparison, TSE, lexirecall, and AP show higher sensitivity with a negligible number of ties.
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Table 4. Probability of a metric tie Pr(� =� � ′) for randomly sampled permutations and � = 106.

� TSE R1000 RP AP LR

1 0.000 0.998 1.000 0.000 0.000
5 0.000 0.990 1.000 0.000 0.000
10 0.000 0.981 1.000 0.000 0.000
25 0.000 0.952 0.999 0.000 0.000
50 0.000 0.907 0.995 0.000 0.000

6 Empirical Analysis

In this section, we empirically assess lexirecall with respect to the associated empirical desiderata from Section
2.4: (i) correlation with existing metrics, (ii) ability to distinguish between rankings, (iii) ability to distinguish
between systems, and (iv) robustness to missing labels.

6.1 Methods and Materials

6.1.1 Data. We evaluated ranking system runs across a variety of conditions (Table 5). For each dataset, we have
a set of evaluation requests and associated relevance judgments. In addition, each dataset involved a number of
competing systems, each of which produced a ranking for every request. The movielens, libraryThing, and beer-
Advocate datasets were downloaded from a public repository with splits and processing described in prior work
[111].12 Amazon data sets were prepared using LensKit 0.14.4 [34] to train a variety of recommendation models
on 5-core global split datasets from the 2023 Amazon Reviews data [51] and generate top-K recommendation
runs for the users in the test splits, using an early version of the LensKit Codex13. For recommender systems
datasets, consistent with [111], we converted graded judgments to binary labels by considering any rating below
4 as nonrelevant and otherwise relevant for these datasets. All retrieval datasets were downloaded from NIST.
In order to analyze results for diferent ranking depths, we categorized datasets as deep (�̃ > 1000), standard
(�̃ ∈ (100 . . 1000]), or shallow (�̃ ≤ 100).

6.1.2 Evaluation Methods. We computed lexirecall using pessimistic imputation. We compare LR with two
traditional recall metrics (R1000 and RP) and two metrics that combine recall and precision (AP and NDCG).
Deinitions for metrics can be found in Section 2. An implementation can be found at https://github.com/diazf/
pref_eval.

6.2 Results

6.2.1 Agreement with Existing Metrics. To understand the similarity of lexirecall and traditional metrics, we
measured its preference agreement with traditional metrics. Speciically, given an observed metric diference,
� (�) ≠ � (� ′), for a traditional metric in our datasets, we computed how often lexirecall agreed with the ordering
of � and � ′,

∑

�,� ′∈�̃�
I
(

� ≻� �
′ ∧ � ≻LR � ′

)

∑

�,� ′∈�̃�
I
(

� ≻� � ′
)

where �̃� is the set of rankings in our dataset. We present results in Figure 10. For reference, we include high
precision metrics RR and NDCG10, which expectedly have the weakest agreement with lexirecall across all
retrieval depths. Similarly, across all depths, we observed highest sign agreement with R1000, indicating an

12https://github.com/dvalcarce/evalMetrics
13https://codex.lenskit.org; runs will be provided as supplemental resources for this paper when published.
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Table 5. Datasets used in empirical analysis. Runs submited to the associated TREC track or recommendation task. Datasets
are labeled according to the depth of runs: ‘deep’ (�̃ > 1000), ‘standard’ (�̃ ∈ (100 . . 1000]), ‘shallow’ (�̃ ≤ 100).

requests runs rel/request docs/request label

recommendation

amzn-cds-vinyl-100 6875 10 2.76 100 shallow
amzn-cds-vinyl-1000 6875 10 2.76 1000 standard
amzn-cds-vinyl-2000 6875 10 2.76 2000 deep
amzn-musical-instruments-100 11648 10 3.08 100 shallow
amzn-musical-instruments-1000 11648 10 3.08 1000 standard
amzn-musical-instruments-2000 11648 10 3.08 2000 deep
amzn-software-100 6345 10 2.28 100 shallow
amzn-software-1000 6345 10 2.28 1000 standard
amzn-software-2000 6345 10 2.28 2000 deep
amzn-video-games-100 11554 10 3.08 100 shallow
amzn-video-games-1000 11554 10 3.08 1000 standard
amzn-video-games-2000 11554 10 3.08 2000 deep
beerAdvocate 17564 21 13.66 99.39 shallow
libraryThing 7227 21 13.15 100.00 shallow
movielens 6005 21 18.87 100.00 shallow

retrieval

core (2017) 50 75 180.04 8853.11 deep
core (2018) 50 72 78.96 7102.61 deep
deep-docs (2019) 43 38 153.42 623.77 standard
deep-docs (2020) 45 64 39.27 99.55 shallow
deep-docs (2021) 57 66 189.63 98.83 shallow
deep-docs (2022) 76 42 1245.62 98.86 shallow
deep-docs (2023) 82 5 75.10 100.00 shallow
deep-pass (2019) 43 37 95.40 892.51 standard
deep-pass (2020) 54 59 66.78 978.01 standard
deep-pass (2021) 53 63 191.96 99.95 shallow
deep-pass (2022) 76 100 628.145 97.50 shallow
deep-pass (2023) 82 35 49.87 99.90 shallow
legal (2006) 39 34 110.85 4835.07 deep
legal (2007) 43 68 101.023 22240.30 deep
robust (2004) 249 110 69.93 913.82 standard
web (2009) 50 48 129.98 925.31 standard
web (2010) 48 32 187.63 7013.21 deep
web (2011) 50 61 167.56 8325.07 deep
web (2012) 50 48 187.36 6719.53 deep
web (2013) 50 61 182.42 7174.38 deep
web (2014) 50 30 212.58 6313.98 deep

alignment between lexirecall and traditional notions of recall. Note that in the standard and shallow conditions,
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Fig. 10. Agreement between lexirecall and traditional metrics over rankings �, � ′ in our datasets. Fraction of ranking pairs
where the lexirecall preference agrees with the sign of the metric diference.

where �̃ ≤ 1000, if there is a diference in R1000, then there is a diference in lexirecall due to pessimistic imputation;
the converse is not true since lexirecall can distinguish rankings that are tied under R1000. The agreement with
NDCG increases to match that of R1000 with increased depth, perhaps due to the weaker position discounting in
NDCG and higher likelihood of including a value based on the lowest ranked relevant item as depth increases
(see Section 4.3). Both RP and AP show comparable agreement higher relative to RR and NDCG10.

6.2.2 Detection of Diference Between Rankings. In Section 5.3, we observed that, for pairs of rankings �, � ′ ∈ ��
sampled uniformly at random, lexirecall resulted in fewer ties than RP and R1000. Figure 11 presents the empirical

fraction of ties when sampling from rankings in our dataset (i.e. �̃�). First, consider traditional recall metrics R1000

and RP. The empirical fraction of ties is substantially lower than suggested by Figure 8 (diferent �̃) and Table 3

(diferent �). This can be explained by the concentration of relevant items in the top positions �̃� compared to
�� , resulting in fewer ties. That said, the fraction of ties for both of these metrics is substantially higher than
observed for lexirecall, something consistent with results in Section 4.3. Although AP and NDCG capture both
precision and recall valance, we can see that lexirecall is comparable in fraction of ties.
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Fig. 11. Fraction of tied comparisons of rankings �, � ′ in recommendation and retrieval datasets.

Although the general trends are consistent across recommendation and retrieval contexts, recommendation
metrics have substantially higher variance. This results from the sparser set of labels in recommendation, where
the total number of unique vectors,

(�
�

)

, is lower and therefore there is a higher probability of ties.

6.2.3 Statistical Sensitivity. We are also interested in the ability of lexirecall to detect statistical diferences
between pairs of runs (i.e. sets of rankings generated by a single system for a shared set of queries). To do so,
we adopted Sakai’s method of measuring the discriminative power of a metric [90]. This approach measures
the fraction of pairs of systems that the method detects statistical diferences with � < 0.05. We use two
methods to compute �-values. In the irst, we compute a standard statistical test and, correcting for multiple
comparisons, measure the fraction of �-values below 0.05. For lexirecall, we adopt a binomial test since we have
binary outcomes. For other metrics, we adopt a Student’s �-test, as recommended in the literature [101]. We also
conducted experiments using incorrect-but-consistent statistical tests with similar outcomes. In order to correct
for multiple comparisons for all tests, we use the conservative Holm-Bonferroni method [8]. Our second method
of computing �-values uses Tukey’s honestly signiicant diference (HSD) test as proposed by Carterette [14].
This method is considered a more appropriate approach to addressing multiple comparisons compared to our
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Fig. 12. Statistical sensitivity. Fraction of run pairs where we observe a statistically significant diference (i.e. � < 0.05) using
a paired test.

irst approach. The goal of this analysis is to understand the statistical sensitivity of lexirecall compared to other
recall-oriented metrics, while presenting non-recall metrics for reference.

We present the results of this analysis in Figures 12 and 13. When using standard tests (Figure 12), lexirecall is
slightly better at detecting signiicant diferences compared to existing recall metrics at deeper retrievals. We can
reine this analysis by inspecting the HSD results (Figure 13). In this case, the sensitivity of lexirecall manifests
more strongly, clearly more discriminative than existing recall metrics for deep retrievals, although losing this
power as retrieval depth decreases. This is consistent with previous observations for preference-based evaluation
[28, 29].

6.2.4 Label Degradation. Efective evaluation methods are stable in the presence of missing relevance labels.
In this analysis, we held the number of queries ixed and randomly removed a fraction of relevant items per
query, leaving at least one relevant item per query. We uniformly sample from all relevant items R to remove. We
present results for the efect of label degradation on the fraction of ties (we expect more ties with fewer labels) and
preference agreement with full data (we expect lower agreement with fewer labels). As with the previous section,
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Fig. 13. Statistical sensitivity. Fraction of run pairs where we observe a statistically significant diference (i.e. � < 0.05) using
Tukey’s honestly significant diference test.

the goal of this analysis is to compare lexirecall to other recall-oriented metrics, while presenting non-recall
metrics for reference.
In terms of fraction of ties (Figure 14), lexirecall degrades comparably to metrics like AP and NDCG and

substantially more gracefully compared to existing recall metrics R1000 and RP. While the importance of relevance
labels for recall-oriented evaluation is important, this result suggests that existing metrics are extremely brittle
when labels are missing. All methods observed more ties at shallower retrieval depths with degradation more
pronounced for traditional recall-oriented metrics. As with our analysis of the number of ties (Section 6.2.2),
because of the sparsity of labels in recommendation, we observe much higher variance compared to retrieval,
where labels are more complete due to pooling [103, 129]. As such, the recommendation tasks can be seen as
operating in the far right-hand portion of retrieval experiments.

In terms of agreement with preferences based on full data (Figure 15), lexirecall again degrades comparably to
AP and NDCG. In recommendation experiments, RP and R1000 behave comparably or better than lexirecall, AP,
and NDCG. However, this may be an artifact of the poor behavior of RP and R1000 under extremely sparse labels,
as demonstrated in earlier experiments. That is, since these metrics observe so many ties and ties increase with
label degradation, accurately predicting these preferences under ‘full data’ will be easier with label degradation.
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Fig. 14. Number of ties as labels removed. For each query, we removed a fraction of items from R and counted the number
of tied rankings. Relevant items were sampled uniformly at random. Average over ten samples.

ACM Trans. Recomm. Syst.



Recall, Robustness, and Lexicographic Evaluation • 27

0.6

0.8

LR R1000 RP AP
d
eep

NDCG

0.6

0.8

stan
d
ard

0.6

0.8

��� ��� ��� ���

labels removed

ag
re

em
en

t

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

sh
allo

w

��� ��� ��� ���

(a) Recommendation

0.2

0.4

0.6

0.8

LR R1000 RP AP

d
eep

NDCG

0.2

0.4

0.6

0.8 stan
d
ard

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

labels removed

ag
re

em
en

t

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

sh
allo

w

0.2 0.4 0.6 0.8

(b) Retrieval

Fig. 15. Preference agreement between metric based on degraded labels and complete labels. For each query, we removed a
fraction of items from R and measured the fraction of preferences ≻� based on the incomplete relevance judgments that
agreed with the preference when using the complete set of relevant items. Relevant items were sampled uniformly at random.
Average over ten samples. ACM Trans. Recomm. Syst.
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We contrast this with retrieval experiments, where labels are more complete. In this condition, RP is much more
sensitive to degradation, dropping in performance quickly. On the other hand, R1000 behaves similar to lexirecall
when preserving most labels, but, for drastically sparse labels, the agreement drops. We again see slightly worse
degradations with shallower retrieval depths across all metrics. RP in particular demonstrates signiicantly worse
degradation compared to all metrics, while R1000 shows worse degradation when removing relevant items based
on ranking frequency.

7 Discussion

We begin our discussion by returning to the desiderata in Section 2.4. We originally sought to deine and
understand recall from a more formal grounding, allowing us to draw connections to recent literature in fairness
and robustness, supporting our irst desideratum. Moreover, our deinition of recall orientation both directly
implied the appropriate recall metric and diferentiated it from existingmetrics, supporting our second desideratum.
Finally, our empirical analysis demonstrated that lexirecall captures many of the properties of existing metrics,
while being substantially more sensitive and stable in the presence of missing labels, supporting our remaining
desideratum. Collectively, we ind strong support for investigating lexirecall as a method for assessing our
robustness perspective of recall.
In light of our conceptual, theoretical, and empirical analysis, we can make a number of other observations

about recall, robustness, and lexicographic evaluation.

7.1 Recall

7.1.1 Labeling. Although lexirecall appears more stable in the presence of missing labels than existing recall-
oriented metrics, the performance of recall and robustness evaluation depends critically on having comprehensive
relevance labels. This situation is exacerbated in recommender system environments where judgments, while
often highly personalized and based on psychological relevance, can be extremely incomplete (see [50] for a
discussion). This suggests two possibilities. Sparsity in recommendation can arise from (i) very niche relevance
or (ii) severe under-labeling of relevant items. In the irst situation, our experiments suggest that lexirecall is
substantially more sensitive than existing recall metrics. However, in the second situation is accurate, we can
examine metric behavior under retrieval scenarios, where labels are more complete. Indeed, our experiments
would suggest that using existing recall metrics for sparse recommendation tasks does not accurately relect
recall under more complete data. This echos similar observations in the recommender system community for
addressing data sparsity issues [36, 52, 108].
While time-consuming, we believe that, in order to develop robust and fair systems, new techniques for

expanding labeled sets for recall evaluation are necessary. In retrieval contexts, initiatives like TREC adopt
pooling as a strategy to achieve more complete judgments [103]. Unfortunately, in situations where relevance is
derived from behavioral feedback (e.g. [16, 56]), comprehensiveness of relevance is often not the focus. Moreover,
the transience of information needs in production environments makes reliable detection of R an open problem.
This is compounded by the desireÐin both retrieval and recommendation contextsÐto estimate relevance for
evaluation and optimization transparently to the user. As such, new methods for estimating relevance of a broader
set of items without impacting the user are necessary.

7.1.2 Depth Considerations for Recall-Oriented Evaluation. All of our recall-oriented evaluations (e.g. lexirecall,
RP, R1000) sufer when operating within a shallow retrieval environment. We recommend that, especially for
recall-oriented evaluation, retrieval depths be high, regardless of the speciic evaluation method. Moreover,
as labels become sparser, both RP and R1000 show substantially more ties (Figure 14) and poor stability in the
presence of missing labels (Figure 15). We recommend that, for shallow retrieval with sparse labels, RP should be
avoided altogether.
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7.2 Robustness

7.2.1 Number of Ties and Metric-Based Evaluation. The high number of ties from RP and R1000 arises when
collapsing all permutations that share the same recall value. Top-heavy recall-level metrics that have nonzero
weight over all relevant items efectively encode the

(�
�

)

permutations onto the real line. We should expect more
ties and lower statistical sensitivity for metrics that have low cutofs (e.g. �̃ < 100). This includes RR and variants
of top-heavy recall-level metrics with rank cutofs (e.g. NDCG10). Even for top-heavy recall-level metrics, we
expect ties if � (�) ≈ 0 for unretrieved items or if the numerical precision limits the ability to represent all

(�
�

)

positions of relevant items. Because of their top-heaviness, these ties are more likely to occur for diferences
at the lower ranks, precisely the positions worst-case performance emphasizes. As a result, even though some
top-heavy metrics may theoretically include worst-case performance, they will not emphasize it in the metric
value.

7.2.2 Mixed Orientation Metrics. We saw agreement between lexirecall and NDCG, even though the latter
captures precision orientation (Figure 5). In Section 4.3, we explained that this may be due to either the inclusion
of �� in top-heavy recall-level metric computation (Equation 1) or because of structural dependencies between
rank positions of �� and � � . Alternatively, since we observed strong empirical agreement between lexirecall and
NDCG, the position of the last ranked relevant item may be predictable because of systematic behavior in the
model. For example, for many scenarios, performance higher in the ranking may be predictive of worst-case
performance. Even if this is case for many systems or domains, we caution against presuming that performance
at the top of the ranking is predictive of worst-case performance. If the worst-case performance is systematic
and amongst smaller-sized groups (i.e. those unlikely to appear at the top), then the performance will not be
well-predicted by larger, systematically-higher ranked items from dominant groups. We recommend lexirecall to
detect worst-case performance in isolation of other criteria (e.g. precision).

7.2.3 A Comment on Graded Metrics. Although we have focused on binary relevance, many ranking scenarios
use graded or ordinal relevance. Consider relevance labels represented as an ordinal scale, where higher grades
relect a higher probability of satisfying the information need according to the rater’s subjective opinion, as
happens in many retrieval scenarios. Under such a grading scheme, an item labeled with the minimum grade
has a probability of relevance of 0 (i.e. no user would ever ind the item relevant) and an item labeled with the
maximum grade has a probability of relevance of 1 − � (i.e. almost every user would ind the item relevant). We
can determine grades that relect the probability of relevance through (i) labeling instructions (e.g. ‘an item with a
high grade should satisfy many users; an item with a medium grade should satisfy some users; an item with a low
grade should satisfy few users’), (ii) voting schemes [42], or (iii) aggregated behavioral data (e.g., clickthrough
rate) [127]. No matter how grades are determined, for a ixed request, a user with a less popular intent may not be
satisied by an item relevant to a more popular intent. This implies that notions of optimality in graded ranking
evaluation (i.e. that higher grades should be ranked above lower grades) explicitly values dominant group intents
over minority intents. From the perspective of robustness, this means that, for graded judgments, we should
consider R to include all items with a non-zero chance of satisfying a user. This is precisely the approach adopted
for TSE and lexirecall.

7.2.4 Robustness of Optimal Rankings. In the case of binary relevance, Robertson [82]’s Probability Ranking
Principle suggests that an optimal ranking will place all relevant items above nonrelevant items. If �∗� is the set of
optimal permutations, then it consists of permutations that rank all of the items in R above D − R. Traditional
ranking methods have largely been deterministic insofar as, given a request, they always return a ixed � ∈ �� .
The optimal deterministic ranker, then, is any ranker that selects a ixed � ∈ �∗� and, therefore, for any optimal
deterministic ranker, the worst-case performance is � (�).
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Fig. 16. Worst-case performance of optimal deterministic and stochastic rankings for� ∈ [1 . . 25].

The situation changes if we consider stochastic rankers [9, 30, 77, 79, 100], systems that, in response to a
request, sample a ranking � from some distribution over �� . Such systems have been proposed in the context of
online learning [79] and fair ranking [30]. An optimal stochastic ranker would, in response to a request, uniformly
sample a ranking from �∗� .
We can show that the worst-case expected performance of the optimal stochastic ranker is better than the

worst-case expected performance for any optimal deterministic ranker,

min
�∈U

E�∼�∗� [� (�,�)] ≥ min
�∈U

� (�∗, �),∀�∗ ∈ �∗�

We present a proof in Appendix D. Figure 16 displays the diference in worst-case performance between optimal
deterministic and stochastic rankings for � ∈ [1 . . 25]. This result provides evidence from a robustness
perspective that ranking system design should explore the design space of stochastic rankers.

7.3 Lexicographic Evaluation

7.3.1 Recovering an Evaluation Metric. In contrast with preference-based evaluation like lexirecall, metric-
based evaluation can be performed eiciently for each ranking independently, moving the complexity from

� ( |�̃� | log |�̃� |) to� ( |�̃� |). Fortunately, existing results in the computation of leximin point to how to design such
a metric.
Yager [123] demonstrates one can construct a leximin representation of a ranking such that leximin(�) >

leximin(�) ↔ � ≻leximin �. Speciically, if � is a� × 1 allocation vector sorted in decreasing order,

leximin(�) =

�︁

�=1

���� (12)

where� is a bottom-heavy weight vector such that�1 ≪ �2 ≪ . . . ≪ �� . In our situation, a system ‘allocates’
exposure but, because � (�� ) is a monotonically decreasing function of �� , we only need to compare the rank
positions � . As such, we can deine our allocation vectors as �� =

�−��
�

. We can use this to deine the recall level
weight vector� as,

�� =

{
Δ
�−1

(1+Δ)�−1 � = 1
Δ
�−�

(1+Δ)�+1−� � > 1
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where Δ = (� + �)−1 and � ∈ (0, 1) is a free parameter. We can then deine metric lexirecall as,

LR(�) = leximin(�)

∝ −

�︁

�=1

����

We can then compare rankings directly using leximin(�). Since
∑

� �� = 1, this can be interpreted as the bottom-
heavy weighted average of the positions of relevant items. We contrast this with uniform weighting found in the
recall error metric [84] or top-heavy weighting found in precision-oriented metrics.

While providing interesting theoretical connection to existing top-heavy recall-level metrics, in practice, due
to the large values of � and �� , computing the metric lexirecall can sufer from numerical precision issues. When
� is unknownÐfor example in dynamic or extremely large corporaÐmetric lexirecall cannot be calculated at all.
In these situations, computing lexirecall is feasible due to our imputation procedure and the fact that we only
care about relative positions.

7.3.2 Optimization. Although our focus has been on evaluation, optimizing for lexicographic criteria may be
an alternative method for designing recall-oriented algorithms, for example for technology-assisted review or
candidate generation. One way to accomplish this is to optimize for metric lexirecall discussed in the previous
section. Since learning to rank methods often optimize for functions of positions of relevant items (e.g. [78]),
standard approaches may suice. Alternatively, in Section 7.2.4, we observed that optimal stochastic rankers
outperformed optimal deterministic rankers in terms of worst-case performance. This suggests that stochastic
ranking techniques similar to those developed in the context of other fairness notions (e.g. [30]) can be used for
recall-oriented tasks.

8 Conclusion

Our analysis indicates that recall, when interpreted as retrieving the totality of relevant items, has conceptual
and theoretical connections to worst-case robustness of retrieval efectiveness across possible users. By providing
a clear deinition of recall-orientation, we have directly captured the recall-orientation of existing metrics
and recognized a missing ‘basis metric’ for recall. Moreover, by developing TSE as the counterpart to RR, we
directly connected recall-orientation to robustness and Rawlsian notions of fairness, providing a normative
argument for improving techniques for gathering complete relevance judgments. Doing so helps ensure the
efective computation of recall and, in turn, address potential unfairness. To efectively deploy TSE, we adopted
lexicographic evaluation techniques and introduce the lexirecall preference-based evaluation method, which we
empirically demonstrated was preferable to existing recall metrics. We anticipate that variants of lexicographic
evaluation can be applied for other constructs. These three themes of recall, robustness, and lexicographic
evaluation, while each individually potentially being interesting areas of theoretical analysis, work collectively
to substantially improve our understanding of recall, a concept that may be as old as the ield of information
retrieval and recommender systems.
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A Full Papers Published at the ACM Conference on Recommender Systems that Measure Recall

We downloaded and reviewed all full papers published at the ACM Conference on Recommender Systems
(2007-2024), omitting reproducibility, late-breaking results, short, demo, doctoral, or keynote papers. A paper was
identiied if recall was quantitatively measured as part of experimentation. Conceptual discussions of recall (e.g.,
in comparison to experimentation metrics) were not considered to use recall. We identiied only those papers
that speciically name recall (e.g., R� ), although some operationalizations of hit rate may be equivalent to recall
[105]. We present the full papers identiied in Table 7.

B Metric Properties

We can connect our proposed metrics to prior work by leveraging several properties deined in the community.
Drawing on fundamental contributions from Mofat [71], Ferrante et al. [38], and Amigó et al. [1], we produced a
synthesized list of properties. These properties should be considered descriptiveÐnot prescriptiveÐsince (i) they
can be in tension, and (ii) there are valid metrics (e.g., high-precision, diversity, fairness) that do not satisfy all of
them. Let �̃ be a top-�̃ from which we impute a total ranking using pessimistic imputation (Section 2.2).
Consistent with our setup, we assume that the evaluator has access to a set of ixed relevance assessments

R over a ixed corpus D and pessimistic imputation of a top-�̃ ranking �̃ . Given a ranking � , let �� refer to the
relevance of �� . Finally, we assume that the number of unretrieved � − �̃ items is larger than the number of
relevant items�, which is the case in most ranking tasks.

(1) Monotonicity in retrieval size [1, 71]. This property refers to the behavior of � as we append items
to �̃ . Following Mofat [71], a metric is monotonically increasing in retrieval size if it is non-decreasing
as �̃ is increased by appending either relevant or nonrelevant items to �̃ . Following Amigó et al. [1], a
metric is (strictly) monotonically decreasing in nonrelevance if it (strictly) decreases as �̃ is increased by
appending nonrelevant items to �̃ ; Amigó et al. [1] refer to the strict version of this as ‘Conidence’. Note
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Table 6. Notation

Z
+ positive integers

Z
∗ non-negative integers

R
+ positive reals

R
∗ non-negative reals

�� set of all permutations of � items
A+ non-empty subsets of A
I : � → {0, 1} indicator function (i.e., returns 1 if � is true; 0 otherwise)
�−� reverse index (i.e., ��−�+1 for the �-dimensional vector � )

D corpus
R relevant set
� size of corpus (i.e., |D|)
� size of relevant set (i.e., |R |)
�̃ number of items retrieved

�� set of all permutations of D

�̃� subset of �� generated by multiple systems for a ixed request

� permutation of D
� sorted positions of relevant items
� item ids of relevant items sorted by position
� number of unique permutations in �� for a given � (i.e.,�!(� −�)!)

� : �� × D+ → R
∗ user evaluation metric

� : �� × D+ → R
∗ provider evaluation metric

� (�,R)
rank
= �′ (�,R) � and �′ rank �� identically

� : Z+ → R
∗ exposure of position

� : Z+ × Z
+ → R

∗ normalization function

U set of possible user information needs for a request
V set of possible providers for a request

that the Mofat [71] and Amigó et al. [1] properties are in tension. For completeness, we refer to a a metric
as (strictly) monotonically increasing in relevance if it (strictly) increases as �̃ is increased by appending
relevant items to �̃ .

(2) Monotonicity in swapping up [1, 38, 71]. A metric is (strictly) monotonically increasing in swapping
up if, when � < � and �� < � � , we observe a (strictly) monotonic increase in � when we swap the items
at positions � and � . Ferrante et al. [38] refers to the non-decreasing property as ‘Swap’. When � > �̃,
Mofat [71] refers to the strictly increasing property as ‘Convergence’ and Ferrante et al. [38] refers to
the non-decreasing property as ‘Replacement’. When � ≤ �̃, Mofat [71] refers to the strictly increasing
property as ‘Top-weightedness’. For contiguous swaps (i.e., � = � + 1), Amigó et al. [1] refer to the strictly
increasing property as ‘Priority’.
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Table 7. DOIs of full papers published at the ACM Conference on Recommender Systems (2007-2024) that measure recall in
experiments.

year total recall DOIs

2007 16 3 10.1145/1297231.12972{48, 50, 51}

2008 20 3 10.1145/1454008.14540{17, 32, 34}

2009 25 4 10.1145/1639714.16397{24, 26, 37, 45}

2010 25 8 10.1145/1864708.18647{21, 28, 31, 32, 41, 44, 45, 47}

2011 22 5 10.1145/2043932.20439{41, 45, 47, 57, 65}

2012 24 11 10.1145/2365952.23659{62, 63, 67, 68, 69, 72, 73, 76, 79, 82, 89}

2013 32 11 10.1145/2507157.2507{160, 170, 171, 172, 182, 184, 186, 209, 210, 211, 215}

2014 35 8 10.1145/2645710.26457{21, 23, 29, 34, 38, 40, 43, 46}

2015 28 7 10.1145/2792838.28001{70, 72, 74, 76, 85, 89, 95}

2016 29 12 10.1145/2959100.29591{33, 37, 46, 47, 49, 51, 57, 67, 70, 78, 80, 82}

2017 26 6 10.1145/3109859.3109{877, 879, 887, 896, 900, 903}

2018 32 11 10.1145/3240323.3240{343, 347, 349, 355, 363, 371, 372, 374, 381, 391, 405}

2019 36 11 10.1145/3298689.334{6996, 7002, 7007, 7009, 7012, 7013, 7026, 7036, 7044, 7058, 7065}

2020 39 12 10.1145/3383313.341{1476, 2232, 2235, 2243, 2247, 2248, 2249, 2258, 2259, 2262, 2265, 2268}

2021 49 19 10.1145/3460231.3474{228, 230, 234, 238, 240, 242, 249, 252, 255, 257, 260, 263, 265, 266, 268,

270, 272, 273, 275}

2022 39 13 10.1145/3523227.3546{752, 754, 755, 760, 762, 763, 768, 770, 771, 775, 782, 784, 785}

2023 47 21 10.1145/3604915.3608{766, 771, 773, 781, 783, 784, 785, 786, 803, 804, 806, 809, 810, 811, 812,

815, 863, 868, 871, 878, 882}

2024 58 24 10.1145/3640457.3688{096, 098, 100, 104, 108, 109, 113, 117, 121, 122, 123, 124, 125, 127, 133,

137, 138, 139, 145, 146, 148, 149, 151, 153}

(3) Concavity in contiguous swap depth [1]. A metric is (strictly) concave in contiguous swap depth if, when
� < � and �� < ��+1 and � � < � �+1, swapping � and � + 1 will lead to a (strictly) larger improvement in �

compared to swapping � and � + 1. Amigó et al. [1] refer this to ‘Deepness’.
(4) Suix Invariance [1]. Given two rankings � and � ′ that have relevant items in same positions in the

top-�̃ preix, a metric is suix invariant if, no matter the positions of the remaining relevant items, the
metric values will be the same. Amigó et al. [1] refer this to ‘Deepness Threshold’.

(5) Preix Invariance [1]. Given two rankings � and � ′ that have relevant items in same positions in the
bottom-� suix, a metric is preix invariant if, no matter the positions of the remaining relevant items, the
metric values will be the same. Amigó et al. [1] refer this to ‘Closeness Threshold’.

(6) Boundedness [71]. A metric is bounded from above if there exists an U� ∈ ℜ such that,

∀R ∈ D+,∀� ∈ �� : � (�,R) ≤ U�

Similarly, a metric is bounded from below if there exists an L� ∈ ℜ such that,

∀R ∈ D+,∀� ∈ �� : � (�,R) ≥ L�

In general, a metric is bounded if it is bounded from above and below.
(7) Localization [71]. A metric is localized if can be computed only with the information in the top-�̃; in other

words, the metric value is suix invariant and independent of the number of unretrieved relevant items.
(8) Completeness [71]. A metric is complete if it is deined when � = 0 (i.e., metrics are of the form

� : �� × D∗ → ℜ).
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Table 8. Metric Properties. 1: if the second derivative of the exposure function is strictly positive. 2: if normalization function
is defined for� = 0. The properties concavity, boundedness, localization, completeness, and realizability are specific to
metric-based evaluation and therefore cannot be analyzed for preference-based evaluation like lexirecall.

THRL THRL TSE LR

� (�,�) > 0

increasing in retrieval size [71] ✓ ✓ ✓ ✓

decreasing in nonrelevance ✓ ✓ ✓ ✓

strictly decreasing in nonrelevance [1]

increasing in relevance ✓ ✓ ✓ ✓

strictly increasing in relevance ✓ ✓

increasing in swapping up [38] ✓ ✓ ✓ ✓

strictly increasing in swapping up [1, 71] ✓

concavity in contiguous swap depth ✓ ✓ ✓ NA

strict concavity in contiguous swap depth [1] ✓
1 NA

suix invariance [1]

preix invariance [1]

boundedness [71] NA

localization [71] NA

completeness [71] ✓
2

✓
2

✓
2 NA

realizability [71] NA

(9) Realizability [71]. A metric is realizable above if it is bounded from above and

∀R ∈ D+, ∃� ∈ �� : � (�,R) = U�

A metric is realizable below if it is bounded from below and

∀R ∈ D+, ∃� ∈ �� : � (�,R) = L�

If� > 0, Mofat [71] refers to metrics that are realizable above as simply ‘Realizable’.

In some cases, we have adopted a property name diferent from the original to help with clarity. In subsequent
sections, we will be demonstrate which of these properties are present for top-heavy recall-level metrics, TSE,
and lexirecall.
Several properties were not present in any of our evaluation methods. None of our methods are strictly

decreasing in nonrelevance. Amigó et al. [1] note also that, ł[a]s far as we know, current evaluation measures
do not consider this aspect.ž None of our methods are preix or suix invariant. This is largely due to the fact
that (i) exposure is strictly monotonically decreasing, and (ii) normalization is a function of recall level (and the
number of relevant items). As a result, any position-based ‘latness’ in the computation is missing. None of our
methods are guaranteed to be bounded to allow maximal lexibility in our analysis; this also means that none of
our methods are guaranteed to be realizable. None of our methods are localized because we explicitly use� and
� in pessimistic imputation; while lexirecall does not need �, it does still requite�.

We summarize the properties for top-heavy recall-level metrics, total search eiciency, and lexirecall in Table 8.

B.1 Properties of Top-Heavy Recall-Level Metrics

Let � be a top-heavy recall-level metric with exposure function � and normalization function �.

Theorem B.1. � is monotonically increasing in retrieval size.
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Proof. Let �̃ ′ be �̃ with another item appended, with pessimistically imputed rankings � ′ and � . If the new
item is nonrelevant, then ∀�, �� = �′� and, therefore, � (�,R) = � (� ′,R) and � is trivially non-decreasing. Next,
consider the case where the new item is relevant. This can only happen if �̃ includes �̃ < � relevant items. As
such, this is equivalent to swapping a relevant item in the imputed ranking � from position � − (� − �̃ − 1) to
position �̃ + 1. Let Δ�, � � (�,R) be the diference in metric value from swapping a relevant item in position � to
position � .

Δ�̃+1,�−(�−�̃−1)� (�,R) = � (� ′,R) − � (�,R)

=

�︁

�=1

� (�′� )� (�,�) −

�︁

�=1

� (�� )� (�,�)

= � (�′�̃+1)� (�̃ + 1,�) − � (��̃+1)� (�̃ + 1,�)

= � (�̃ + 1,�) (� (�̃ + 1) − � (� − (� − �̃ − 1))) (13)

Since � (�,�) ≥ 0 and � (�̃ + 1) > � (� − (� − �̃ − 1)), we know that Equation 13 will always be non-negative. □

Theorem B.2. � is monotonically decreasing in nonrelevance.

Proof. See the irst case in the proof Theorem B.1. □

Theorem B.3. If � (�,�) is (strictly) positive, � is (strictly) monotonically increasing in relevance.

Proof. See the second case in the proof Theorem B.1. Moreover, if � (�,�) is strictly positive, then Equation 13
will always be strictly positive. □

Theorem B.4. If � (�,�) is (strictly) positive, � is (strictly) monotonically increasing in swapping up.

Proof. Given a ranking � ∈ �� , let � be the � th relevant item and� < � � the position of an arbitrary nonrelevant
item ranked above it. Let ℓ be the recall level of the irst relevant item below position � (i.e., ℓ = min{� : �� > �}).

Δ� � ,�� (�,R) = � (ℓ,�) (� (�) − � (�ℓ )) +

�−1︁

�=ℓ

� (� + 1,�) (� (�� ) − � (��+1))

Since � (�,�) ≥ 0 and � (�′� ) > � (�� ) for � ∈ [ℓ, �], we know that this diference will always be non-negative.
Moreover, if � (�,�) is strictly positive, then the diference will always be strictly positive. □

Theorem B.5. If � (�,�) strictly positive and the second derivative of � is (strictly) positive, then � is (strictly)
concave in contiguous swap depth.

Proof. Let �, � ′ ∈ �� be two rankings whose relevant position vectors difer in one element � (i.e., ∀� ≠ �, �� =

�′� ) and � � < �′� . The metric diference for moving the �th relevant item up one positions in � is,

Δ� � ,� �−1� (�,R) = � ( �,�) (� (� � − 1) − � (� � ))

If the second derivative of � is positive, since � � < �′� ,

(� (� � − 1) − � (� � )) ≥ (� (�′� − 1) − � (�′� ))

Moreover, because � (�,�) > 0,

� ( �,�) (� (� � − 1) − � (� � )) ≥ � ( �,�) (� (�′� − 1) − � (�′� ))

Δ� � ,� �−1� (�,R) ≥ Δ�′
� ,�

′
�−1

� (�,R)

Where the inequality is strict if the second derivative of � is strictly positive. □

ACM Trans. Recomm. Syst.



42 • F. Diaz et al.

Theorem B.6. If � (�,�) is deined for� = 0, then � is complete.

Proof. The only factor in Equation 1 that depends on� is �. If it is deined for� = 0, then � is deined as
well. □

We note that, of the remaining properties, although we cannot prove every top-heavy recall-level metric will
satisfy them, there are top-heavy recall-level metrics that do.

B.2 Properties of Total Search Eficiency

Let � be TSE with an arbitrary exposure function � and normalization function �. Because TSE is a top-heavy
recall-level metric, we know that it satisies all of the properties in Section B.1 except those conditional on
� (�,�) > 0, since �SL3 (�,�) = 0 when � < �.

B.3 Properties of lexirecall

Theorem B.7. lexirecall is monotonically increasing in retrieval size.

Proof. Let �̃ ′ be �̃ with another item appended, with pessimistically imputed rankings � ′ and � . If the new
item is nonrelevant, then ∀�, �� = �′� and, therefore, � (�,R) = � (� ′,R) and lexirecall is trivially non-decreasing.
Next, consider the case where the new item is relevant. This can only happen if �̃ includes �̃ < � relevant items.
As such, this is equivalent to swapping a relevant item in the imputed ranking � from position � − (� − �̃ − 1)
to position �̃ + 1. Because of pessimistic imputation, the bottom� − �̃ − 1 relevant items will be tied. However,
�′�+1 = �̃ + 1 and ��+1 = � − (� − �̃ − 1). If� − �̃ < � − �̃, then lexirecall will be positive. □

Theorem B.8. lexirecall is monotonically decreasing in nonrelevance.

Proof. Let �̃ ′ be �̃ with a nonrelevant item appended. Since the new item is nonrelevant, � will be unchanged
and lexirecall will be the same and is trivially non-increasing. □

Theorem B.9. lexirecall is strictly monotonically increasing in relevance.

Proof. See the second case in the proof Theorem B.7. □

Theorem B.10. � is monotonically increasing in swapping up.

Proof. Given a ranking � ∈ �� , let � be the � th relevant item and� < � � the position of an arbitrary nonrelevant
item ranked above it. Since ∀� > �, �� = �′� , we only need to compare � � and �

′
� . If � > � �−1, then, because � < � � ,

� ′ ≻ � . If � < � �−1, then �′� = � �−1. Because � �−1 < � � , �
′ ≻ � . □

The properties concavity, boundedness, localization, completeness, and realizability are speciic to metric-based
evaluation and therefore cannot be analyzed for preference-based evaluation like lexirecall.

C Robustness

In order to demonstrate the relationship between the order of relevant items � and the order of eitherU or V ,
we irst introduce a representation of subsets of positions of relevant items. LetW = [1 . . �]+ be the set of all
non-empty sorted lists of integers between 1 and�. Moreover, letW>� = [� + 1 . . �]+ andW≥� = [� . . �]+. This
is a way to represent each individual � ∈ U, for example, in Figure 6. To see how, notice that, because bothU

and V are also power sets of� distinct integers, there is a one to one correspondence with W. Speciically,

∀� ∈ W, � = {� ∈ � |��� }

∀� ∈ U,� = sort({�� �
∈ � | �})

ACM Trans. Recomm. Syst.



Recall, Robustness, and Lexicographic Evaluation • 43

and similar for V .
Given a way to represent each � ∈ U, we need to sort these users according to their utility. We can use our

metric deinitions � (�,�) and � (�,R, �) to deine a partial ordering overW. This naturally can be represented
as a graph where edges relect that the utility of one user is greater than another. We present an example based
on� = 5 of the transitive reduction of the partially ordered set for bothU andV in Figure 17. Although we will
present formal proofs, these visualizations help understand the utility structure behind these sets of users.

C.1 Worst-case and Total Search Eficiency

Notice that, in our example, there is a single, unique minimal element for both U and V . In this section, we will
prove that this element will always be associated with the lowest-ranked relevant item, TSE(�,R). Throughout
these proofs, we will use abbreviations for top-heavy recall-level metric properties deined in Section 2.

Theorem C.1. If � is a top-heavy recall-level metric and � (1, 1) = 1, then

WC� (�,R) = TSE(�,R)

Proof. We want to show that, for any � ∈ U, the performance � (�,�) is greater than or equal to TSE(�,R),
with equality for the user associated with the lowest-ranked relevant item. Recall that each� ∈ W is associated
with a � ∈ U,

� (�,�) ≥ � (��−1 )� (1, 1) top-heaviness

= � (��−1 ) � (1, 1) = 1

≥ � (��) ��−1 ≤ �� and � (�) > � (�′),∀� < �′

= TSE(�,R)

□

Theorem C.2. If � is associated with a top-heavy recall-level metric �, then

WC� (�,R) = TSE(�,R)

Proof. Because all summands of Equation 2 are positive, we know that the minimum � ∈ V will correspond
to the smallest summand. Moreover, because of the monotonically decreasing exposure, this is the exposure of
the lowest ranked relevant item, which is exactly TSE(�,R). □

C.2 Leximin and Lexicographic Recall

Let �� = � (�� ). Since � is sorted in increasing order and � (�) is monotonically decreasing in � , � is monotonically
decreasing. Assuming we measure the performance of a ranking � for a user � as � (�,�), then we deine � to
be the�+ × 1 vector containing the value of � (�,�) for each � ∈ U. We will assume that � , like �, is sorted in
decreasing order.

Lemma C.3. If � ≻leximin �′ and � (1, 1) = 1, then the minimum non-tied user is in W≥� − W>� , where � =

min{� ∈ [1 . . �] |�� ≠ �′� }.

Proof. Let � = min{� ∈ [1 . . �] |�� ≠ �′� }. Because each� ∈ W>� is comprised of indices � > � and because
∀� > �, �� = �′� , for each associated user �, � (�,�) = � (�′, �). When computing leximin, by the axiom of the
Independence of Identical Consequences [2], we can remove all of the elements from � and � ′ associated with
theW>� . This means that the minimum non-tied pair will be in W −W>� .
Now we need to show that W≥� −W>� is the set of minimal elements of W −W>� . This holds if we can

show that for every element� ∈ W −W≥� , there exists�
′ ∈ W≥� −W>� , such that � (�,�) ≥ � (�,� ′).
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[1, 2, 3, 4, 5]

[2, 3, 4, 5]

[3, 4, 5]

[4, 5]

[5]

[4]

[3, 5][3] [3, 4]

[2, 4, 5] [2, 5][2] [2, 4] [2, 3, 5][2, 3] [2, 3, 4]

[1, 3, 4, 5] [1, 4, 5] [1, 5][1] [1, 4] [1, 3, 5][1, 3] [1, 3, 4] [1, 2, 4, 5] [1, 2, 5][1, 2] [1, 2, 4] [1, 2, 3, 5][1, 2, 3] [1, 2, 3, 4]

(a) Users

[1, 3, 4, 5] [2, 3, 4, 5]

[1, 3, 4] [2, 3, 4]

[1, 2, 4, 5]

[1, 2, 4]

[1, 2, 3, 5]

[1, 2, 3]

[1, 2, 3, 4]

[2, 4, 5] [3, 4, 5]

[2, 4] [3, 4]

[2, 3, 5]

[2, 3]

[1, 4, 5]

[1, 4]

[1, 3, 5]

[1, 3]

[1, 2, 5]

[1, 2] [3, 5] [4, 5]

[3] [4]

[2, 5]

[2]

[1, 5]

[1] [5]

[1, 2, 3, 4, 5]

(b) Providers

Fig. 17. Transitive reduction of the partially ordered setW and� = 5. Nodes correspond to elements inW. A directed edge
from� to� ′ if � (�,�) > � (�,�′) (Figure 17a) or � (�,R, �) > � (�,R, �′) (Figure 17b) based on the properties of top-heavy
recall-level metrics (Definition 2.2).

If�−1 ≤ � (as depicted by the pink nodes Figure 17), then let� ′
= {�},

� (�,�) ≥ � (��−1 )� (1, 1) top-heaviness

= � (��−1 ) � (1, 1) = 1

≥ � (�� ) ��−1 ≤ �� and � (�) > � (�′),∀� < �′

= � (�,� ′)
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[1, 2, 3, 4, 5]

[2, 3, 4, 5]

[3, 4, 5]

[4, 5]

[5]

[4]

[3, 5][3] [3, 4]

[2, 4, 5] [2, 5][2] [2, 4] [2, 3, 5][2, 3] [2, 3, 4]

[1, 3, 4, 5] [1, 4, 5] [1, 5][1] [1, 4] [1, 3, 5][1, 3] [1, 3, 4] [1, 2, 4, 5] [1, 2, 5][1, 2] [1, 2, 4] [1, 2, 3, 5][1, 2, 3] [1, 2, 3, 4]

(a) Users. PartitioningW when � = 3.W is partitioned intoW≥� −W>� (double circle),W
>� (dashed circle), andW−W≥�

(colored circles, described in the proof of Lemma C.3). This figure best rendered in color.

[1, 3, 4, 5] [2, 3, 4, 5]

[1, 3, 4] [2, 3, 4]

[1, 2, 4, 5]

[1, 2, 4]

[1, 2, 3, 5]

[1, 2, 3]

[1, 2, 3, 4]

[2, 4, 5] [3, 4, 5]

[2, 4] [3, 4]

[2, 3, 5]

[2, 3]

[1, 4, 5]

[1, 4]

[1, 3, 5]

[1, 3]

[1, 2, 5]

[1, 2] [3, 5] [4, 5]

[3] [4]

[2, 5]

[2]

[1, 5]

[1] [5]

[1, 2, 3, 4, 5]

(b) Providers. Assuming � = 3, then the provider with the minimum exposure is� = [�].

Fig. 18. Leximin

If�−1 > � and � ∈ � (as depicted by the blue nodes Figure 17), then we can let� ′
= { � ∈ � : � ≥ �}.

ACM Trans. Recomm. Syst.



46 • F. Diaz et al.

[3] [3,4] [3,4,5] [3,5]

[3] [3,4] [3,4,5] [3,5]

Fig. 19. Domination ofW≥� −W
>� . Let � be represented by circles and � ′ be represented by squares.

Let � = |� | − |� ′ |,

� (�,�) ≥

|� |︁

�=�+1

� (���
)� (� − �, |� | − �) top-heaviness

=

|�′ |︁

�=1

� (��′
�
)� (�, |� ′ |) deinition of� ′

= � (�,� ′)

If �−1 > � and � ∉ � (as depicted by the green nodes Figure 17), then � ′
= {�} ∪ { � ∈ � : � > �}. Let

� = |� | − |� ′ |,

� (�,�) ≥

|� |︁

�=�+1

� (���
)� (� − �, |� | − �) top-heaviness

= � (���+1 )� (1, |� | − �) +

|� |︁

�=�+2

� (���
)� (� − �, |� | − �)

= � (���+1 )� (1, |�
′ |) +

|�′ |︁

�=2

� (��′
�
)� (�, |� ′ |) deinition of � and� ′

> � (��′
1
)� (1, |� ′ |) +

|�′ |︁

�=2

� (��′
�
)� (�, |� ′ |) ���+1 < �� and � (�) > � (�′),∀� < �′

=

|�′ |︁

�=1

� (��′
�
)� (�, |� ′ |)

= � (�,� ′)

□

Theorem C.4.

� ≻leximin �
′ → � ≻leximin �

′

Proof.

Case 1 (�� > �′�). Theorem C.1 means that ��+ = �� and � ′
�+ = �′� and the implication is true.
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Case 2 (�� = �′�). Because � ≻leximin �
′, we know that there exists a � such that �� > �′

�
and ∀� ∈ [� +1 . . �], �� =

�′� (as depicted in Figure 19). We know from Lemma C.3 that the lowest-ranked, non-tied users are inW≥� −W>� .
We want to show that, for every element� ∈ W≥� −W>� , � is preferred to � ′.

� (�,�) =

|� |︁

�=1

� (���
)� (�, |� |)

= � (�� )� (1, |� |) +

|� |︁

�=2

� (���
)� (�, |� |)

= � (�� )� (1, |� |) +

|� |︁

�=2

� (�′��
)� (�, |� |) ∀� > �, �� = �′�

> � (�′� )� (1, |� |) +

|� |︁

�=2

� (�′��
)� (�, |� |) �� < �′� and � (�) > � (�′),∀� < �′

=

|� |︁

�=1

� (�′��
)� (�, |� |)

= � (� ′,�)

□

Theorem C.5.

� =leximin �
′ → � =leximin �

′

Proof. The only way that � =leximin �
′ is when ∀� ∈ [1 . . �], �� = �′� . If this is the case, then ∀� ∈ U, � (�,�) =

� (� ′, �) and, therefore, � =leximin �
′. □

Theorem C.6.

� ≻leximin �
′ → � ≻leximin �

′

where, for � ∈ V , �� = � (�,R, �).

Proof.

Case 1 (�� > �′�). We know from the proof of Theorem C.2, the lowest ranked items in � and � ′ correspond to
� (��) = �� and � (�′�) = �′� , respectively, and so the proof holds in this case.

Case 2 (�� = �′�). Because � ≻leximin �
′, we know that there exists a � such that �� > �′

�
and∀� ∈ [�+1,�], �� = �′� .

The provider � = [�] must be the worst-of non-tied element. Assume that there exists a worse-of non-tied
provider. Because� is a singleton and because of monotonically decreasing exposure, this worse of provider
must be in W>� . However, we know that these providers are all tied and therefore we have a contradiction.

□

D Optimal Rankings

Let �∗� be the set of permutations that rank all of the items in R above D − R.

Theorem D.1. Given �∗ ∈ �∗� ,

min
�∈U

E�∼�∗� [� (�,�)] ≥ min
�∈U

� (�∗, �)
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Proof. Let �̃ = argmin�∈UE�∼�∗� [� (�,�)] be theworst-of user for a stochastic ranking and �̌ = argmin�∼�∗� � (�, �̃)

the worst deterministic ranking in �∗� for �̃,

E�∼�∗� [� (�, �̃)] =
1

�

︁

�∼�∗�

� (�, �̃)

≥ � (�̌, �̃)

≥ min
�∈U

� (�̌, �)

= min
�∈U

� (�∗, �)

where the inal equality follows because �̌, �∗ ∈ �∗� and, therefore, have isometric distributions of user utility. □

E Number of Ties

Theorem E.1.

Pr(� =LR � ′) =
�!(� −�)!

�!

Proof. If we sample a ranking uniformly from �� , the probability of any speciic � is,

Pr(�) =
�

|�� |

=

(

�

�

)−1

Let P�
� be the set of all size� samples of unique integers from [1 . . �].

Pr(� =LR � ′) = Pr(� = �′)

=

︁

�,�′∈P�
�

Pr(�)Pr(�′)I(� = �′)

=

︁

�∈P�
�

Pr(�)2

=

(

�

�

)

×
1

(�
�

) ×
1

(�
�

)

=
�!(� −�)!

�!

□

Theorem E.2.

Pr(� =TSE � ′) =

(

�

�

)−2 �︁

�=�

(

� − 1

� − 1

)2

Proof. First, we will compute the probability of ranking � where the position of the last relevant item is � ,

Pr(�� = �) =

( �−1
�−1

)

(�
�

)
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We can use this to compute the probability of a tie,

Pr(� =TSE � ′) = Pr(�� = �′�)

=

︁

�,�′∈P�
�

Pr(�)Pr(�′)I(�� = �′�)

=

�︁

�=�

Pr(�� = �)2

=

�︁

�=�

( �−1
�−1

)2

(�
�

)2

□

Theorem E.3.

Pr(� =R� � ′) =

(

�

�

)−2 �︁

�=0

(

�

�

)2 (
� − �

� − �

)2

Proof. Let Rel(�, �) =
∑�

�=1 I(�� ≤ �). First, we will compute the probability of ranking � where � items are
ranked above position � ,

Pr (Rel(�, �) = �) =

(�
�

) (�−�
�−�

)

(�
�

)

We can use this to compute the probability of a tie,

Pr(� =TSE � ′) = Pr(Rel(�, �) = Rel(�′, �))

=

︁

�,�′∈P�
�

Pr(�)Pr(�′)I(Rel(�, �) = Rel(�′, �))

=

�︁

�=0

Pr(Rel(�, �) = �)2

=

�︁

�=0

(�
�

)2 (�−�
�−�

)2

(�
�

)2

□

Theorem E.4.

Pr(� =RP �
′) =

(

�

�

)−2 �︁

�=0

(

�

�

)2 (
� −�

� − �

)2

Proof. The proof follows that of Theorem E.3, substituting� for � . □
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