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ABSTRACT
The importance of tasks in information retrieval (IR) has been long
argued for, addressed in different ways, often ignored, and fre-
quently revisited. For decades, scholars made a case for the role
that a user’s task plays in how and why that user engages in search
and what a search system should do to assist. But for the most
part, the IR community has been too focused on query processing
and assuming a search task to be a collection of user queries, often
ignoring if or how such an assumption addresses the users accom-
plishing their tasks. With emerging areas of conversational agents
and proactive IR, understanding and addressing users’ tasks has
become more important than ever before. In this paper, we provide
various perspectives on where the state-of-the-art is with regard to
tasks in IR, what are some of the bottlenecks in deriving and using
task information, and how do we go forward from here. In addition
to covering relevant literature, the paper provides a synthesis of
historical and current perspectives on understanding, extracting,
and addressing task-focused search. To ground ongoing and future
research in this area, we present a new framing device for tasks
using a tree-like structure and various moves on that structure
that allow different interpretations and applications. Presented as a
combination of synthesis of ideas and past works, proposals for fu-
ture research, and our perspectives on technical, social, and ethical
considerations, this paper is meant to help revitalize the interest
and future work in task-based IR.
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1 INTRODUCTION
Scholars have long argued for the importance of considering task in-
formation in information retrieval (IR) for truly helping people with
complex, unexpressed, or unclear needs [17, 45]. Over the decades,
the concept of task has been studied by many researchers who
have produced notable theoretical and practical outcomes. Several
attempts have been made to understand search tasks, characterize
and extract them, and use task knowledge to better provide support
in search and recommendation applications. There are several small
and practical successes along the way, including search services
incorporating spatial and temporal information in understanding or
expanding a query, as well as using the current context and history
activity to provide contextual recommendations. However, these
efforts can be limiting at best and harmful at worst as they fail to
regard user intents or goals as a way to model the ongoing task.

Can we meaningfully connect operationalization of search to
conceptualization of task (take search to task)? How do we create
a framing device with tasks with the explicit purpose of applying
it to various IR applications? What do we gain (and lose) if we are
successful with this? These are some of the core questions that trig-
gered our investigations – some theoretical, some empirical, and
others simply thought experiments – resulting in this perspective
paper. Thus, the purpose of this perspective paper is to shine the
light, once again, on this very important area of IR and provide a
new foundation built with current understanding and future pos-
sibilities that include emerging domains of conversational agents,
multi-device search, and proactive recommenders to guide users to
complete their tasks step by step.

The remainder of the paper is organized as follows. The next
section reviews some of the most important and transformative
research on tasks in IR over the last few decades. We also list several
recent events and activities to demonstrate the importance of this
area and emphasize the scholarly interest. In Section 3, we present
a framing device to think through possibilities and challenges for
capturing task-related information in IR. Section 4 extends this by
providing paths and perspectives as we move forward, specifically
focusing on task representation and using such representations in
IR applications. Some of such applications that are taking shape
now and are important in the future of IR are outlined in Section 5.
In Section 6, we briefly discuss methods and metrics for evaluating
task-based applications. Finally, we conclude in Section 7 with our
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thoughts on task futures, along with a discussion of ethical consid-
erations regarding using tasks in search and other applications.

2 A BRIEF HISTORY OF TASKS IN IR
A task is generally considered as a set of connected physical, cogni-
tive, and affective actions through which individuals try to accom-
plish some goals in their work or everyday lives [26, 168]. In the
context of IR, the concept of task has taken on explicit meanings
related to understanding and supporting information seeking and
searching. In this section, we give an overview of the ways in which
task has been understood in previous IR-related research, beginning
with a general survey of different approaches, then considering
some specific aspects of task that have been investigated, followed
by discussion of some significant attempts to apply knowledge of
task in IR, and concluding with a discussion of recent workshops
concerning task in IR.

2.1 Overview of Approaches to Task in IR
Some of the earliest prior research in IR related to task can be traced
back to the cognitive perspective in IR [18], which was centrally
concerned with understanding what motivated a person to engage
in information seeking and searching. This perspective influenced
works by Vakkari [167] and Ingwersen and Järvelin [77], which
consider tasks in the design of IR systems to find out for what
purposes the system is used [139] and thus provides implications
for IR system design to personalize information search according
to the task at hand. Based on a series of empirical works, Vakkari
[167] developed a framework of task-based information searching
comprising three stages: pre-focus, focus formulation, and post-focus.

Tasks are often considered multi-level information seeking pro-
cesses in which people need information to achieve a goal [e.g.,
29, 139, 143, 166]. Many existing task models [e.g., 34, 88, 99] have
investigated and identified searchers’ tasks as static and overar-
ching goals that motivate search actions, but this is not always
desired as the task evolves with time and changing cognitive states.
Conversely, different characteristics or facets of tasks [99] influence
people’s interaction with intelligent systems, such as search engines
[107]. Search tasks are influenced by the work task or everyday life
task that drives them to seek information or are associated with a
problematic situation [28].

Identification of task, at various levels, has been an area of focus.
Broder [23] proposed that a person’s intent or goal in engaging with
a search engine could be one of three types: informational, transac-
tional, and navigational. This scheme has been successfully used in
a great deal of research, to classify tasks according to search behav-
iors and for study and support of search according to type. Rose
and Levinson [137] extended Broder’s scheme by specifying types
of information goals, and adding a new goal type (resource). They
tested their scheme of motivating goals (or tasks), by classifying
search engine queries.

Many early works investigated and identified various aspects of
task which could influence a variety of search behaviors, including
task complexity [e.g., 29], task difficulty [e.g., 92] and work context
[e.g., 58]. Others considered the interactive and dynamic nature of
search tasks themselves [e.g., 13].

Apart from task, existing studies in IR segment information seek-
ing behaviors into various levels of explicit and implicit signals.

While performing tasks, searchers’ actions are also driven by inten-
tions and can be well-defined or ill-defined [77]. These studies have
indicated that there is a close association between searchers’ per-
formance of a task and the information need, the search strategies
employed, and the assessment of document relevance and utility.

Beyond search, tasks permeate almost every aspect of our daily
work and personal lives [5]. They involve different activities, have
different constraints, and take different amounts of time to complete.
Users of task management applications would benefit from assis-
tance with many aspects of task management, especially task plan-
ning [20] and prioritization [128]. There has been recent progress
in task intelligence, in areas such as discovering digital assistant ca-
pabilities [176], estimating task durations [181], and automatically
tracking task status [182].

It should be noted that not all research concerned with tasks
in IR has been explicitly about modeling or using task. Some such
examples include research on task trails [101], personalized search
[178], trail recommendation [150], cross-session tasks [174], task
continuation [1], and cross-device tasks [175].

2.2 Task Levels
According to Byström and Hansen [27, 28], task contexts in infor-
mation practices can be represented by a nested model consisting of
three levels (from outer level to inner level): work task, information
seeking task, and search task. Specifically, work tasks are separable
parts of a person’s duties in his or her workplace [28]. Everyday
life tasks that emerge from non-work scenarios can also lead to
active information seeking and searching practices (e.g., search for
and book a hotel for travel) [2].

In addition to Byström and Hansen’s nested model of task, Xie
[190] also explored the multilevel nature of user goals and tasks and
developed a four-level hierarchical framework of goals. This four-
level typology covers a wide range of user goals and tasks (from
long-term task-independent goals to local goals behind specific
search tactics) and was verified via user studies [103, 190].

2.3 Task Facets
Focusing on different dimensions or task taxonomies, previous
research has examined the impacts of task types and facets on
search interactions from different perspectives. Liu et al. [105] and
Jiang et al. [82] examined the associations between user behaviors
and objective task features (i.e., task product, task goal, task type)
and discussed to what extent these behavioral features can help
disambiguate search tasks of different types. Capra et al. [34] found
that manipulating task a priori determinability via modifying task
items and dimensions can significantly affect users’ perceived task
difficulty and choices of search strategies.

With respect to task-user combined features, Wildemuth [186]
argued that in task-based information search, search tactics are in-
fluenced by users’ topical knowledge. Liu et al. [106] demonstrated
that both whole-session level and within-session search behaviors
are affected by task difficulty, and that the dynamic relationships
between search behavior and task perception are influenced by task
type. Similarly, Aula et al. [7] investigated search behavioral varia-
tions under tasks of different levels of difficulty, and found more
query variance, more usage of advanced syntax, and longer time
on search engine result pages (SERPs) with more difficult tasks.
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Li and Belkin [99] developed a faceted approach to conceptualiz-
ing tasks in IR based on related literature on task classification as
well as their empirical studies on task-based information search-
ing [97, 98]. The faceted framework provides a holistic approach to
exploring the nature of tasks and conceptually supported a series
of empirical studies on task-based search interactions.

2.4 Task Stages
Task process is an aspect of task which differs from static task prop-
erties or facets [99] (e.g., predefined task goal, task product). When
conceptualizing tasks from the process-oriented perspective, we are
essentially looking at the process of doing or performing tasks. The
core argument here is that in the context of information seeking,
we cannot define or study a task without examining how the task
was actually completed (or failed). Therefore, to fully understand a
task, we need to explore both the objective task features and users’
responses to the evolving task environments at multiple levels (e.g.,
behavioral, cognitive, emotional).

Many search process models focus on behavioral aspects and
examine the transitions of information seeking and search actions.
For instance, to describe the general process of information seek-
ing, Ellis [53] studied the information seeking patterns of academic
social scientists and broke it down into six characteristics: start-
ing, chaining, browsing, differentiating, monitoring, and extracting.
Wilson [188] suggests that in some circumstances, Ellis’ “charac-
teristics” can be organized as a sequence of information seeking
stages. Ellis’ model clearly identifies the features of information
seeking patterns and has been modified and tested empirically [e.g.,
54, 55]. However, this model only describes the behavioral level of
task-based information seeking. It does not consider the interaction
between the information seeker and the multi-dimensional context
in which task states and information seeking activities evolve.

2.5 Applying Task Knowledge in IR
Applications of task knowledge to IR have demonstrated that task
representations can be used to provide users with better query sug-
gestions [8], build user models for improved personalized search
[115, 178] and recommendation [199], and help in satisfaction pre-
diction [68, 173]. Mehrotra et al. [114] used a tensor-based approach,
representing each user as a combination of their topical interests
and their search task behaviors for personalization. Other works
have developed various novel task context embeddings to represent
queries via search logs to provide task-based personalization, query
suggestion, and re-ranking [115, 119]. Tolomei et al. [160] investi-
gated the concept of task flows and analyzed query logs to generate
task-based query suggestions. Baraglia et al. [12] introduced the
notion of search shortcuts and offered query suggestions to drive
goal attainment.

Vu et al. [171] has also used tasks to model user interests in
search. In a similar vein but in other contexts, several scholars
have leveraged task information to provide long-term support for
task completion [e.g., 1, 84, 181]. Cai et al. [31] used task models
to improve the ranking of retrieved search results to provide task-
based support to users. Tasks help users achieve their search goals
and understand and evaluate a system’s competency in helping
users do so. Hassan et al. [68] used search task constructs to predict
satisfaction. White and Kelly [185] used them to improve relevance

feedback. Song and Guo [152] demonstrated that task information
could help to automate tasks to reduce user burden.

Other researchers have focused on assistive systems in terms of
tours or trails to lead users through their search process [70, 120,
132], predicting users’ next search action based on the current ac-
tions, either by predicting the next result click [32] or by predicting
short-term interests based on task topic information [177].

2.6 Recent Research, Development, Activities
There continues to be significant interest and activity surrounding
tasks from the research community. Several workshops have been
held on task-based IR, focusing on search interactions, searcher
intents, and tasks in information search. This includes the SIGCHI
2012 workshop on End-user Interactions with Intelligent Systems
[156], and the Second Strategic Workshop on Information Retrieval
in Lorne (SWIRL) [4]. The Task-based and Aggregated Search work-
shop held in 2012 [96] focused on the challenges of task-based and
aggregated search, such as the mismatch between search interface
and specialized task-based functionalities, the lack of homogeneous
systems to support different tasks, and so on. In the same year,
the SIGIR 2012 workshop entitled “Entertain Me” Supporting Com-
plex Search Tasks [19] focused on fostering potential solutions to
problems faced by searchers with complex information needs.

An NSF-sponsored workshop on Task-Based Information Search
Systems, held in 2013, discussed challenges in developing systems
and tools to support tasks and user needs Kelly et al. [87]. The SIGIR
2013 workshop on Modeling User Behavior for Information Retrieval
Evaluation [39], examined ways to model search intent based on
queries. Workshops on Supporting Complex Search Tasks held in
2015 [61] and 2017 [16] initiated interdisciplinary dialog on many
task-related open research questions, including evaluation and the
role of context. The WSDM 2018 workshop on Learning from User
Interactions [113], focused on task-based intelligent systems, more
specifically on six related topics – user needs and task understand-
ing, user modeling and personalization, metrics and evaluation, user
interaction processes and context, intelligent interface design and
applications. The WSDM 2019 workshop on Task Intelligence [71],
focused on tasks in the context of system development, including
areas such search assistance, personalization, and recommendation.
Shah and White [146] also delivered a well-attended tutorial on
this topic at SIGIR 2020.

3 TASK COMPOSITION AND SUPPORT
These decades of work have led to many different mechanisms for
representing tasks, which we can divide into two sets: explicit and
implicit representations. Explicitly represented tasks are often pre-
sented as hierarchies, trees, or lists of aspects. These are explainable
and readily interpretable. Implicit representations often use a prob-
ability distribution (over latent aspects of tasks) or encoded vectors.
Such representations are usually not meant to be interpreted by
humans, but they can offer more flexibility.

We have experimented with both of these representations over
the years [e.g., 42, 107, 121], recognizing their advantages and disad-
vantages. However, we have started to converge on ideas that offer
the best of both worlds—providing the interpretability of an explicit
representation, with the scalability of an implicit representation.
For example, we focused on task completion, defining three stages
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Figure 1: An abstract task “tree”. Larger tasks may be decom-
posed into smaller tasks, and ultimately to actions. Some of
these may be unobservable (dotted lines). Task support needs
us to move “up”, “down”, and “across” the tree. See text for
notes 1○, 2○, and 3○.

of a task: beginning, continuing/exploration, and ending/terminal. For
a given task and its stage, we also attempted to identify the kinds of
support the user could use. Such support may include query or doc-
ument suggestions, snippets or answers, as well as external tools.
The goal here was to do manual (explicit) annotations for many
search sessions with known tasks to then learn a model that could
create an implicit representation (e.g., vector embeddings) of a task
with respect to some application, such as next query prediction.

However, as we worked with several real-world datasets of
search sessions, we realized that our coding scheme for task stage
and support annotations was not as comprehensive or robust as we
had hoped. We need a better framework that offers both compre-
hensive representation of a task as well as enough flexibility to be
able to accommodate various applications and datasets. We discuss
a possible approach next.

3.1 Tasks as Trees
We now consider some mechanisms and times for a search sys-
tem to support a searcher’s tasks. Simplifying the nested model of
Byström and Järvelin [29] and the hierarchies of Xie [190], we can
say that a task (also called a “macrotask” [37]) is composed of sub-
tasks, sub-sub-tasks, and so on. For example, “arrange a vacation in
Austin” may consist of “find the best dates” and “make bookings”;
“make bookings” might be composed of “book flights” and “book
a hotel”; etc. Each of these sub-tasks could be at any of Byström
and Järvelin’s levels (Figure 1). At the lowest level, a simple task is
instead composed by “actions”: the observable things people (or as
we will discuss later, systems) might do. These could be instances of
queries, or clicks; but could also be reading books, conversing with
friends, or other moves (bottom level of Figure 1). In some cases this
structure will be explicit, as in a project plan or a hierarchical to-do
list, but more often it will not be. The structure might not bemapped
out at the start, will certainly be dynamic in all but the simplest
cases, and different strategies will be useful at different points. As
searchers may be simultaneously engaged in multiple tasks, the cor-
responding hierarchies of sub-tasks and actions may also interleave
in interesting and dynamic ways. It is our perspective that hierar-
chical representations are key to task modeling that is supported
by a body of existing literature [28, 29, 37, 80, 154, 163, 190, 191].

In principle, a search system can offer support at each level of
this hierarchy, although in practice search support tends to be small-
scale. For example, actions are supported by techniques such as
query auto-completion (supporting the current action) or query
suggestion (supporting the next action), and these supports are
relatively well-studied [30]. Some low-level tasks are also supported
in search systems: for example, major web search engines offer
booking widgets for flights and hotels, directly supporting these
small transactional tasks. Mid-level tasks can be supported by, for
example, recognizing a flight booking and offering to book a hotel
and transport. Although only partially search applications, airline
websites routinely offer this. High-level tasks, such as planning an
entire vacation, are not at all well supported in software but are
routinely supported by (human) agents and delegates.

3.2 Moves
The tree of (sub)tasks and actions also suggests certain moves that
competent software should make. To move left to right in the tree
is to predict or suggest the next thing in a sequence. To move up
the tree, action to task or sub-task to super-task, is to recognize a
more complex task, having recognized its constituents [e.g., 82, 108].
Finally, to move down the tree is to decompose a task [e.g., 73, 198].

For example, by re-ranking search results, Bennett et al. [21]
consider short-term and long-term context information for person-
alization which in our framework corresponds to moving left to
right for short and longer distances but without explicitly modeling
the hierarchy. Similarly, Mitra [120] considers sessions as paths in
query embedding spaces, again moving left to right without specifi-
cally modeling the hierarchical relationships. Finally, Sordoni et al.
[153] use a hierarchical recurrent encoder-decoder architecture to
simultaneously model the sequential relationship between terms in
a query and between queries in a session. While they do not con-
sider higher level relationships between search sessions, sub-tasks,
and tasks, it may be natural to employ such methods to model task
hierarchies.

3.3 Challenges
This model illustrates some challenges we face, if we are to build
task-aware search completent in long run. First, somemoves around
the tree are easier than others. For example, at the time of writing,
popular web search engines support small, transactional tasks—
such as booking a flight—only when the most-recent query looks
promising. Research on building longer-term task models is still
limited [95, 174], even at the scale of consecutive searches [100, 178],
meaning this move is currently only possible when there is a 1:1
correspondence between task and action (point 1○ in Figure 1).

Some actions are also unobserved, or unobservable, from soft-
ware, even in practice ( 2○). For example, a web search engine will
most likely be unaware of a searcher’s other activity online; all
online services will be blind to a face-to-face conversation.

Finally, observed actions are sparse signals and more than one
task will have similar steps, so moving up the tree is more difficult
than moving down or sideways. We can easily imagine support for
decomposing tasks, and can also imagine going across the tree at
any level: for example, we could predict the next action given a
sequence of actions, or we could predict the next microtask given
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a sequence of microtasks. It is harder to imagine getting from ob-
served actions to the uppermost (macro-) task or goal 3○, especially
when observations are incomplete 2○. We must also note that the
data searchers give us will be bound by the affordances we give
them; in practice, that means that searchers will express themselves
in short keyword phrases (“lhr lax flights”) rather than explain a
task (“I need to get to the LA office for Wednesday’s big meeting”).

Challenges for supporting tasks in search therefore include:

(1) Representing tasks in ways that allows the system to take actions.
This representation needs to handle tasks at different granular-
ity, with different topics and strategies, and tasks which persist
over time.

(2) Observing more task-relevant context, to better identify and track
tasks as they happen. This needs to include tracking across dif-
ferent devices and different timescales, so we can better identify
tasks from actions and “move up” the tree.

(3) Developing task-oriented interfaces that encourage descriptions
of task, not need and not short queries; and which support tasks
as they happen, either in the search interface or elsewhere.

4 TASK MODELING
There are different ways we can extract, represent, and apply task
information to address the challenges discussed in Section 3.3. In
this section, we review some possible approaches we could take in
modeling and extracting complex task structures composed of any
number of tasks or sub-tasks.

4.1 Task Representation
In the model shown in Figure 1, tasks can be defined at differ-
ent granularity levels. This flexibility provides ways to represent
tasks from different theoretical and methodological perspectives.
At the same time, it asks for a far-reaching representation capa-
ble of modeling work at multiple levels of abstraction [135]. Task
descriptions can range from a high level of abstraction to a con-
crete, granular action-oriented level with precise information need
strongly associated to the task. As mentioned by Paterno [134], to
build an intelligent task-aware search system, it is necessary to
support tasks at each level of the task hierarchy not only from top
to down but also from left to right. There are many possibilities to
instantiate our task framework by applying diverse supervised and
unsupervised techniques depending on the availability of search
interaction signals. Assuming that there may be multiple sub-tasks
associated with a user’s information need and that these sub-tasks
could be interleaved across different sessions, a bare tree extraction
algorithm has the potential to extract a hierarchical representa-
tion of tasks/sub-tasks embedded in search processes as considered
by Mehrotra and Yilmaz [117] (e.g., decomposing a macro task into
microtasks as moving down the tree in Figure 1). The approach
allows us to go across the tree at any level.

Another possible approach could be a vector representation of
tasks implicit in search behaviors (i.e., points 1○ and 3○ in Figure 1)
by triangulating observable search events with other situational and
contextual information related to the search process. This abstract
representation of tasks can especially be helpful in search scenarios
where searchers’ tasks are not clearly expressed or manifested. For

example, existing research has shown how such signals indicate
the nature of the task being done [e.g., 38, 107, 108, 122].

To move up and down the task hierarchy, action to task or sub-
task to macro-task, it is crucial to know the connections among
the contextual components of the search session. Based on the idea
that in a real-world information network, proximal nodes in the
network structure tend to be similar or related to one another, it is
intuitive to visualize user-system interactions initiated by a specific
task as a complex graph network structure of users’ actions (i.e.,
query submission, clicks on a document) and systems’ reactions
(i.e., analyze, retrieve, and display relevant related items). Similarly,
queries issued and actions performed by a user and documents
viewed within a short time period are more likely to be different
stages of the same task, sub-tasks, or sub-sub-tasks; therefore, the
search state can be extracted based on similar node representation
patterns. Therefore, a sequential heterogeneous graph embedding-
based task model [e.g., 60] could potentially capture the structural
features of interactive search sessions and represent tasks from
observable behavioral signals. This way, the model can represent
the macro-task (moving up in the tree) or the next microtask given
a sequence of microtasks (moving down or right in the tree).

We have seen several attempts to model search sessions as
Markov Decision Proceses [e.g., 36, 194], Hidden Markov Mod-
els [e.g., 33, 50] or Partially Observed Markov Models [e.g., 193].
Taking the idea further, we could apply reinforcement learning
approaches to learn to predict or suggest the next action/task given
a sequence of actions or tasks. This is similar to search intent pre-
diction by Yao et al. [195].

4.2 Inferring Tasks from Observable Events
Many studies used lexical and content-based features, such as the
lexical content of queries, for determining topical and task change
in the sequence of query formulations. For example, Verma and
Yilmaz [169] tried to identify entities and clusters of terms related
to entities in queries (e.g., using tagging, TF-IDF scoring, term filter-
ing, category terms) to represent a task as a set of terms related to
an entity. Other studies have used latent search interaction events
to infer tasks (query-based features: query term cosine similarity;
URL-based features: URL domain clicked, Jaccard coefficient be-
tween clicked URL sets; session-based features: same session and
the number of sessions in between, query reformulations, click
entropy, query length, post-click actions, and session lengths; tem-
poral features: dwell time for action events). Studies have shown
how such signals indicate the nature of the task being performed,
even when there is no explicit statement [107–109, 122, 175]. De-
pending on the availability of search interaction features at a given
time, we could exploit several clustering algorithms to extract tasks.

5 APPLICATIONS OF TASK IN SEARCH
Task information applications can pave the way for simulating,
developing, and evaluating task-aware support. Although exist-
ing search systems have improved incredibly and support users
with specific factual information tasks, their support is still lack-
ing for complex and exploratory search tasks. Given the nature of
these tasks, they need to be decomposed into multiple actionable
sub-tasks (i.e., move down the task tree shown in Figure 1). They
may require numerous rounds of interaction (queries/clicks, from
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a search engine perspective) to complete those tasks [7]. Track-
ing and completing those sub-tasks increases cognitive demands,
regardless of user experience level. The task tree can be applied
to decompose exploratory and complex tasks into smaller goals,
hence reducing cognitive load. This can also help narrow the focus
of the assistance offered to the specific task at hand, which could
be represented in a semantic space (the so-called “implicit repre-
sentations” referenced earlier) to better identify the task and more
fully capture the user’s underlying goals and intentions.

In this section, we examine four applications where such consid-
erations of task-based knowledge are valuable.

5.1 Contextual Search
Searches are performed within a situational context. Understand-
ing and modeling this context, especially the current task, is vital
for search systems in finding the most relevant information. Task
models derived from recent queries and clicks (i.e., the observable
actions in the leaf nodes of Figure 1) within the current session can
be applied to improve search engine performance [148, 189]. These
task representations can assume many forms, including distribu-
tions over topical categories [21] or semantic vectors [118].

As we try to model tasks in a short-term search context, we
often find ourselves discussing sessions (sequences of interactions
demarcated by topic or time [84]), which are not exactly the same
as tasks (especially given multi-tasking [155]) but are a reasonable
proxy for task in a search setting and are a valuable source of
tasks data [100, 101]. Task models must evolve over time as more
evidence is collected about user interests and intentions (implicitly,
explicitly, or both) and ideally be transferable across sessions as
tasks are suspended and resume over time [1]. Other search-related
applications of task models that span the leaves of our task tree
include personalizing search results [116] and generating query
suggestions [62].

5.2 Multi-device Search
Complex tasks can span both time and space. Another way that the
leaves on the task tree can be related is in terms of the devices used.
As mentioned in the previous section, there has been some focus
in IR on supporting cross-session tasks [1]. Cross-device search-
ing [126, 175], where people initiate a task at one time and/or on
one device and resume it later, perhaps on a different device, is re-
lated to cross-session and may be simply because of necessity, but
also the device capabilities (e.g., larger display, availability during
commute). Supporting both types of searching requires a task rep-
resentation that is transferable between devices (something more
abstract and consistent than a sequence of observable actions). This
involves moving up in our task tree, from actions to micro-tasks,
sub-tasks, and so on, stopping at the point where the device space
can be most fully represented without being so broad that the task
representation is meaningless. Multi-device experiences capitalize
on the strengths of multiple devices simultaneously to support
complex tasks (e.g., recipe preparation, home or auto repair) [180].
For example, we can combine a smart speaker such as an Ama-
zon Echo with a tablet such as an Apple iPad capitalizes on the
far-field speech recognition capabilities of the speaker and the high-
resolution display of the tablet. In these experiences, the evolving

task representation (implicit, explicit, or both) plays a central role
in connecting the devices and providing dynamic context.

In multi-device scenarios, as with many other task scenarios,
task assistance can be offered to users at different stages of the
task (e.g., proactively searching for resources related to the current
action [130]) depending on an understanding of the task and the
affordances available. This multi-device paradigm can also apply
directly to a search context, where, for convenience, people can
pose natural language questions to smart speakers via voice, ob-
tain quick answers, and use their smartphones or tablet devices
to review supporting information (videos, websites, documents,
etc.). For example, a child getting quick responses from a digital
assistant (e.g., an answer to a math question) on a smart speaker or
smart watch can also be shown explanatory information on a larger
display device. Supporting the use of combinations of devices in
multi-device search can provide a way for people to maximize the
quality and diversity of the information that they utilize. More fully
representing tasks, and their dynamism and context sensitivity, is
critical in supporting these multi-device behaviors.

5.3 Conversational Agents
One of the active areas of application for task-based IR is con-
versational agents. One can imagine the following conversation
happening with an agent over voice using, for example, a smart
speaker or a smartphone.

User: I think I would like to go do some outside ac-
tivity today. Do I need to wear a face mask if I go
running?
Agent: It depends where you are running, but if you
are concerned about safety or compliance and still
want an outdoor activity, may I suggest biking?
User: Oh.. ya, sure, that could work. Do I need to
know anything?
Agent: While you don’t need to wear a mask while
biking, you should still bring one with you. There is
also a chance of some rain showers, so plan for that.
And yes, definitely carry some water.

Now let us examine what may be going on here. There are four
distinct capabilities that we see the agent exhibiting.
• Understanding the intention behind a user seeking information.
The agent understands that the user wants to do outdoor activity
while being safe. This understanding enables the agent to make
other recommendations beyond simply answering the question.

• Addressing the effects of unknown unknowns (i.e., “people don’t
know what they don’t know”). The user asked “what do I need to
know if I go biking?”, indicating their lack of knowledge about
even what may be the right questions to ask. This often happens
in human-human interactions. Here, the agent understands the
situation (task), as well as the intention behind that question and
responds with relevant suggestions.

• Zero-query recommendations. The user does not ask aboutweather,
but the agent deems it important to convey that information as it
may affect the outdoor activity. Also, given the nature of the ac-
tivity (biking), the agent also recommends carrying water. These
are examples of zero-query recommendations, in which an answer
is provided without there being a clear question. Again, doing
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something like this requires a deep understanding of the situation
(task), the user, and their intentions.

• Proactive recommendations. The conversation starts by the user
asking a question about running, but rather than completely an-
swering that question, the agent makes a different suggestion
(biking), which turns out to be a better one. This is a case of the
agent being proactive. In order to go beyond the user’s need (at
least the expressed need) and provide a relevant and compelling
answers or recommendations, an agent needs to be able to under-
stand the purpose behind the potential task, the user’s intention
behind asking a question, and the world knowledge about how
different tasks are executed.
In short, to create an intelligent agent like the one envisioned in

the scenario above, we need to bring in the following capabilities:
• Abstracting out from a query or a question or even an observation
to the task and/or context.

• Leveraging world knowledge (in this case, public health guide-
lines and mask mandates).

• Generating recommendations from that task/context and weigh-
ing whether that would outperform query/question-based rec-
ommendation.

• Learning how to perform a task.
As one can see, much of what we need revolves around tasks.

This is just a simple example of a short conversation. Imagine hav-
ing discussions (and even debates) about health, politics, and more.
Imagine carrying out such conversations across multiple sessions,
multiple devices, and multiple people. There are tremendous possi-
bilities here for a giant leap for IR systems. We believe at its core is
the notion of task and ways to capture, represent, and address it.

5.4 Proactive Search and Recommender Systems
The ability to identify and automatically extract and represent tasks
accurately has implications for search or recommender systems in
understanding users’ information needs at different task levels as
well as supporting people in task completion. Therefore, it is crucial
to understand how to utilize this knowledge about tasks behind the
request to improve a system’s offerings to its users. Also, the ability
to model users’ tasks from their observable actions (at different
levels per Figure 1) unlocks new directions for solving many prob-
lems and improving user engagement and satisfaction for building
intelligent and proactive systems that can retrieve and recommend
information implicitly without requiring explicit queries or other
interactions [49]. This is important because research has shown
that people often struggle to get their tasks done due to a lack of
knowledge, motivation, or information literacy [142].

The observable actions covered earlier are primarily those taken
by the user on their initiative, but this need not always be the case. In
mixed-initiative systems, these actions can be prompted by the sys-
tem or even taken by the system on the user’s behalf [74], i.e., new
leaf actions in the task tree can be proposed or created automatically.
The notion of proactive search systems is not new. Letizia [102] was
one of the earliest applications that provided proactive recommen-
dations during web browsing. Commercially deployed proactive,
intelligent systems such as Google Now and Microsoft Cortana can
model short-term and long-term search intents and tasks based
on search log history [64]. In recent times, Song and Guo [152]

proposed proactive recommendations to the user at specific times
based on repeated pattern recognition over time. Incorporating task
understanding into a proactive system could support users in each
task stage and help enable task completion. A task-aware intelli-
gent system could proactively identify potential problems in users’
search paths and guide users at various task levels by providing
help recommendations or what actions could be executed next to
avoid future problems. The aforementioned task representation can
be incorporated into various sequence-to-sequence models, proba-
bilistic, or Markov decision-based reinforcement learning models
to generate proactive recommendations.

6 EVALUATING TASK-BASED APPLICATIONS
Evaluation is central in IR [85] and this is no different in task-based
search and recommendation systems. Many of the same methodolo-
gies (user studies, simulations, etc.) used in IR to evaluate system
performance can be used to evaluate systems to support tasks in
search and recommendation settings. Non-task-based IR systems
tend to focus on ad hoc retrieval and consider each query indepen-
dently. Task-based systems consider tasks holistically, spanning
multiple queries and/or sessions, the associated context, and task
outcomes. The metrics used to determine task-based system perfor-
mance deserve special attention given the focus of these systems
on supporting full task processes (not individual queries) and at-
taining task completion (not only result relevance). We now offer a
perspective on methods and metrics for task-based evaluation.

6.1 Methodologies
Many standard evaluation methods (user study protocols, instru-
ments, etc.) apply to the evaluation of task-based systems [85]. In
IR, the Cranfield experiments [41] and TREC [170] have driven
considerable progress, including in tasks research [197]. Beyond
Cranfield and TREC, evaluation in IR must now take a broader view
on tasks, users, and context [83], to improve experimental realism
and the reliability of conclusions drawn. Methods such as living
laboratories [91] bridge user- and system-centered research via re-
sources, tools, and infrastructure for collaborative experimentation
[11]. Mixed methods studies can provide a more complete picture
of task performance, albeit with more complexity and greater cost
than single-method studies. As mentioned earlier, tasks can extend
over time and be part of larger macrotasks. This additional context
should also factor into task-based evaluation [47].

6.2 Metrics
Evaluating systems on the basis of search task performance has been
explored for decades [72]. All metrics make assumptions about task
behavior, which must be validated [51]. Conceptualizing tasks and
creating task models are important in determining appropriate task-
based evaluation metrics. It is insufficient to solely target system
functionality (or even more narrowly: specific components) when
systems and users must collaborate to complete tasks successfully
[14]. We should evaluate task-based systems holistically to reach
actionable conclusions and understand system performance [10].
We discuss that now, targeting task processes and task outcomes.

6.2.1 Task Processes. Process metrics are focused on how people
attempt to complete the task, regardless of the task outcome. They
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include: (1) Task completion time, both actual time and perceived
time. Time has been used in search evaluation [57, 192]. Task has
been shown to affect document dwell times [89, 185]. Smucker and
Clarke [151] studied time from the perspective of gain per unit
time. Perceived time can differ from stopwatch time per factors
such as attentional demand [44]; (2) Effort expended to complete the
task (e.g., the number of actions taken, recommendations reviewed,
dialog turns). In search, effort typically describes the number of
searches or clicks [9, 43]. Kelly [86] discussed the relationship be-
tween expected and experienced effort (e.g., if experienced effort
is less than expected, the task is considered easy). Effort underlies
many user models in IR evaluation [e.g., 79, 125]. Kiseleva et al.
[94] showed that user satisfaction is negatively correlated with the
amount of effort to complete a task: more effort means less user
satisfaction; (3) Engagement covers the connection between the
user and the system, spanning emotional, cognitive, and behavioral
aspects [78]. It is affected by many factors, including user and task
characteristics, user experience, and biases [131]. It can be a goal in
task-based systems (e.g., in open-domain dialog [76]) but also a side
effect (e.g., in task-oriented dialog systems [35]), and; (4) Progress
through the task. Detecting task completion can be straightforward
for some tasks, e.g., transactional tasks, but complex for others, e.g.,
learning tasks [183]. Progress can be tracked using dedicated tools
[20] or inferred [182]. Recent research has built benchmarks for
measuring task progress in digital assistants [104]. Task-oriented
dialog systems, focus on metrics such as number of slots filled (𝑥 of
𝑦) [25]. These four popular metrics are broadly applicable, are easy
to define in task-based search and recommendation settings, and
can be computed at low-cost at large scale. There are other met-
rics including cognitive load [15], learning [136], affect [56], and
usability [3], which are more challenging to define and measure.

6.2.2 Task Outcomes. Outcome metrics focus on the product of
tasks, either a real outcome (e.g., task completion) or a user-perceived
outcome (e.g., satisfaction). Salient examples include: (1) Task utility,
denoting the value of information obtained to complete the task,
e.g., relevance [123]. Relevance is affected by task stage [158] and
relevance metrics help estimate support for task completion [124].
Relevance metrics are usually computed per query but session-level
metrics must also be considered in task scenarios [110], as must
task support beyond result pages [46]. Relevance is personal and
situational [141] and task-based evaluation must consider that, e.g.,
during contextual search [21]; (2) Satisfaction with the outcome of
the task and the process, often modeled at the task/session level
[69]. Satisfaction is non-binary and impacted by task and user ef-
fects [89, 93, 185] and even query position in the session [81]. More
observations of on-task behavior enable more accurate models of
satisfaction [75, 94], and; (3) Task success, covering whether task
objectives were accomplished. This relates to satisfaction but not
entirely and can be modeled based on behavioral signals [67]. Com-
pletion events such as in-world activities may be unobservable to
online systems, making it difficult to measure task success, although
proxies e.g., conversions [24] may offer insight. Other task outcome
metrics, including novelty and diversity [40], creativity [149], and
adoption and retention, e.g., search engine switching [184] and
sustained use over time [48], are promising but are also less well
defined and require data that can be difficult to obtain.

6.3 Additional Considerations
There are many other metrics that can apply to task-based systems
including robustness, privacy, adaptivity, and scalability [147]. In
developing task-based metrics, we also must consider user models
(e.g., personas) and task models (e.g., search strategies and goals).
Task performance is affected by many factors, including intrinsic
properties of the task (e.g., nature of the task [121], topic [112],
difficulty [187], complexity [29]) as well as extrinsic properties
such as user attributes (e.g., expertise [179], familiarity [90]), the
situation [77, 80, 144], and other factors such as meta-cognitive
skills in task planning and reflective assessment [22]. We must also
understand the nature of the user experience, which impacts how
metrics are defined and interpreted. Metrics also interact, e.g., effort
affects satisfaction [196] and they trade off, e.g., time taken versus
coverage [162]. Metrics must be contextualized, e.g., not all effort
is detrimental and more effort could also mean more learning.

Task support systems also contain multiple connected compo-
nents [128]. Evaluating per component performance has limited
value in appraising what the user would experience [162]; hence
our focus here on holistic metrics. However, the metrics may not
be correlated [59]. Integrated metrics combine multiple variables
[131, 157, 164], although these can be difficult to interpret. Sets of
metrics are commonly employed in the evaluation of task-oriented
dialog systems [172] and defining such a set of metrics that are
agreed upon by the community could help evaluate task-based
search and recommendation systems. Meta-analysis frameworks
[6, 140] analyze the extent to which metrics capture key properties
and align with user preferences; they may also be applicable here.

7 TASK FUTURES
Considering user tasks in IR is not a new idea, but every new gener-
ation of IR students and scholars seem to encounter it in a new light
– sometimes leading to groundbreaking advancements, and other
times redoing or incrementally adding to previous work. With the
increasing attention to and importance of emerging IR applications,
we believe the time is ripe for a new generation of scholars to
not only rediscover task-based IR, but also take a conceptual and
practical leap to finally realize the vision of supporting users in
accomplishing their tasks, regardless of their information literacy
or specificity in queries. We now consider some future directions
and conclude by discussing key ethical considerations.

7.1 Research Threads and Directions
Here, we identify some big challenges, each suitable for one or
more PhD dissertations or grant proposals:
• Task understanding
– Formalize and validate various task representations (both im-
plicit and explicit, as mentioned earlier), potentially tying them
to different contexts or applications.

– Investigate different ways to use contextual information (e.g.,
spatiotemporal signals, concurrent running applications) to
better understand tasks.

– Extend task understanding across multiple sessions and/or
devices.

– Attributing and aggregating observed actions into higher-level
tasks (moving up the task tree).
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• Task support
– Make task a first class object in search support, e.g., surface
guided tours in response to exploratory queries.

– Provide support for task completion (not just providing search
results), including recommending search as a means of task
completion, where appropriate.

– Integrate IR applications with existing task applications such
as Microsoft To Do and Google Tasks, as well as email and
calendar, to seamlessly surface task-related information and
actions.

– Better support complex tasks comprisingmultiple steps, includ-
ing decomposing complex tasks into more manageable sub-
tasks, and supporting search across multiple sessions and/or
devices.

– Support team tasks (direct collaboration, sub-task assignment,
load balancing, etc.) in addition to individual tasks.

– Cooperate with users directly, e.g., task-oriented dialog sys-
tems, to address tasks more explicitly and also to better educate
users about the role of IR systems in solving tasks.

– Explore task automation, starting with frequent or recurring
tasks, e.g., travel planning, finding job opportunities, and re-
searching a socio-political issue, including extending work on
standing queries [127] and slow search [159].

• Task data and experimentation
– Provide lightweight task capture mechanisms, as ground truth
for machine learning models and to build trust in task assis-
tance with users by giving them agency over what task-related
information is shared with the system.

– Find ways to uncover more unobservable events related to the
task process (triangulate data sources, with user consent).

– Create shared datasets and challenges, with user consent, to
promote task-related research and mitigate risk of leaking
sensitive data via methods such as differential privacy [52].

We believe the framing device presented in this paper (Figure
1) as well as our proposals for how such a device can be useful
in modeling and using task in search applications (Sections 4 and
5) can help for at least some of these directions. For example, the
task tree structure along with the formulations of various moves
presented in Section 3 can be used to define a set of support actions
(e.g., offer within-task query recommendations with traversal to a
sibling node, suggest related tasks with a jump to a new parallel
branch in the tree) in interactive search. This structure can be
comprised of (1) identifying which part of this task tree the user
is at a given moment; (2) deciding what could be the next set of
sub/super/related tasks could be from this tree; and (3) making and
revising recommendations based on user actions (moves).

7.2 Ethical Considerations
Capturing and representing tasks can have benefits, but at what
cost? Many scholars have argued that low information literacy can
lead to users not being able to fully utilize the available informa-
tion or the tools to their most potential [138]. Even for users with
reasonable or high information literacy, they often “don’t know
what they don’t know” [17, 145]. In other words, if an IR system is
relying on a user explicitly and at least partially expressing their
information needs in order to provide them results or recommen-
dations, it is likely to face challenges serving these populations of

users. Extracting and using task information, and being proactive
in search can help such users [185]. However, what is often ignored
are the ethical considerations and responsibility of researchers and
developers.

As we move toward systems that go beyond serving explicit
requests from users, with task-based IR systems being one of the
examples, there are dangers in how such systems could unduly
influence user behaviors and nudge them in ways that perpetuate
bias and a false sense of trust. With rapid development in artificial
intelligence techniques that are being deployed in search systems,
those systems become less and less trustworthy, even while usu-
ally remaining trusted [133]. The feedback loops created between
systems recommending information and users selecting among
recommendations make the selections less and less useful for train-
ing: we are no longer observing human behavior, but controlling
it [111, 129]. This effect, along with other systemic effects, means
that the datasets on which models are trained include significant
biases [63, 161, 165].

This vicious cycle of a system getting ahead of user requests to
recommend results and the users clicking on them as they either
lack motivation or enough information literacy can be manifested
in several ways. For instance, this proactive, task-based recommen-
dation could lead to a search engine promoting its own services and
tools simply because it has access to a lot more data and insights
about those entities than those from their competitors.

Identifying and modeling tasks may call for more data collection
from more people, even those who do not actively use the system.
We need to balance the need for more data and the dangers of
ubiquitous data collection such as surveillance capitalism and other
forms of abuse [65, 66, 200].

As task modeling inherently necessitates predicting users’ next
actions/needs, we must consider the cost of false prediction (e.g.,
requiring user to perform evenmore actions to counter the system’s
false beliefs regarding user goals or intentions). A related question
is how to recognize and respect user agency in their tasks and not
overtly influence their course of action.

We should also not assume that a taskmodeling system can easily
identify and address a singular objective or interest. When different
stakeholder interests are involved, how do we balance across the
different dimensions and control for unintended consequences?
For example, a tool that makes it really easy to book a flight may
unintentionally discourage users to do more research that may lead
to cheaper tickets. Finally, if task modeling is inherently complex
and resource intensive, it might mean that system designers need to
prioritize which tasks they support, raising questions about fairness
across different user populations. In short, explicating and using
task information, while important and desired, must be done with
ethical issues in mind. We should, in general, create a practice of
integrating such considerations from the outset rather than trying
to address them later or fix problems resulting from not considering
them as a posthoc activity.
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