
47

A Multi-Objective Optimization Framework for

Multi-Stakeholder Fairness-Aware Recommendation

HAOLUN WU,McGill University, Canada

CHEN MA, City University of Hong Kong, Hong Kong SAR

BHASKAR MITRA,Microsoft Research, Canada

FERNANDO DIAZ, Google, Canada

XUE LIU,McGill University, Canada

Nowadays, most online services are hosted onmulti-stakeholder marketplaces, where consumers and produc-

ers may have different objectives. Conventional recommendation systems, however, mainly focus on maxi-

mizing consumers’ satisfaction by recommending the most relevant items to each individual. This may result

in unfair exposure of items, thus jeopardizing producer benefits. Additionally, they do not care whether con-

sumers from diverse demographic groups are equally satisfied. To address these limitations, we propose a

multi-objective optimization framework for fairness-aware recommendation, Multi-FR, that adaptively bal-

ances accuracy and fairness for various stakeholders with Pareto optimality guarantee. We first propose four

fairness constraints on consumers and producers. In order to train the whole framework in an end-to-endway,

we utilize the smooth rank and stochastic ranking policy to make these fairness criteria differentiable and

friendly to back-propagation. Then, we adopt the multiple gradient descent algorithm to generate a Pareto set

of solutions, from which the most appropriate one is selected by the Least Misery Strategy. The experimental

results demonstrate that Multi-FR largely improves recommendation fairness on multiple stakeholders over

the state-of-the-art approaches while maintaining almost the same recommendation accuracy. The training

efficiency study confirms our model’s ability to simultaneously optimize different fairness constraints for

many stakeholders efficiently.
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1 INTRODUCTION AND MOTIVATION

When viewed from a sociotechnical lens, conventional deployedmachine learning systems demon-
strate a range of socially problematic behaviors, including algorithmic bias and misinforma-
tion [18]. Multisided recommendation systems in marketplaces, content-distribution networks,
and match-making platforms require reasoning about the potential impact on several populations
of stakeholders with potentially disparate and possibly conflicting objectives. As such, the poten-
tial societal implications of a recommendation algorithm must balance multiple objectives across
these groups.
Two of the most important stakeholders in these multisided systems are (i) producers who pro-

vide goods and services, and (ii) consumers who purchase them. When a recommendation system
systematically overlooks the utility of certain historically disadvantaged groups, inequity can be
exacerbated for producers and consumers. We take the movie recommendation platform as an ex-
ample, where young children are likely to be a minority of consumers and they favor cartoons. If
the system is solely concerned with the utility of adults in order to maximize revenues, this may
have a detrimental effect on the satisfaction of young children, and hence on the utility of cartoon
producers. In this circumstance, the cartoons receive insufficient exposure, and their creators may
leave the platform as a result of poor earnings. Such an unbalanced market will work against those
adults’ utility if they ever wish to watch cartoons someday, thus degrading the overall experience
on the platform.
Unfortunately, existing approaches for recommendation systems/platforms are stuck in the

aforementioned issue. First, conventional accuracy-centric approaches employ various data-driven
models [40, 42, 46, 47, 56, 76] to estimate the relevance scores of the consumer-product pair, and
then recommend the top-K most relevant products to the corresponding consumers. However,
these approaches can create a huge disparity in the exposure of the producers due to the “superstar
economics” [3, 53], which is unfair for the producers and also harms the health of the marketplace.
Second, many approaches merely address either the consumer-sided fairness [24, 30, 43, 70] or
the producer-sided fairness [1, 6, 59, 72, 73, 85], but neglect the fairness on the other side. This
is not desirable, as producers and consumers are both indispensable in these marketplaces. Third,
several approaches [58, 81] consider the fairness on both sides merely at an individual level (e.g.,
envy-freeness), but ignore the sensitive attributes (e.g., age, gender, popularity) at a group level.We
regard this as sub-optimal, since the society strives to not overlook the utility of minority groups
in the real world. Thus, the sensitive attributes should be taken into consideration.
Apart from the limitation that no prior works have attempted to model both the consumer-

sided and producer-sided fairness at a group level concurrently in a recommendation framework,
another disadvantage is that prior approaches [53, 75] on fairness-aware recommendation gener-
ally require fine-tuning weights for multiple objectives in order to optimize the overall objective,
which is tedious and cannot guarantee a satisfactory final solution. When involving multiple ob-
jectives, one optimal solution is that no objective can be further improved without impairing the
others. This optimality is widely recognized and is referred to as the Pareto optimality [50]. Ex-
isting approaches for optimizing multiple objectives can be broadly classified into two categories:
(i) heuristic search and (ii) scalarization (weighted summation). While multi-objective evolution-
ary algorithms are frequently used in heuristic search, they ensure that the emerging solutions are
not dominated by each other (but can still be dominated by Pareto optimal solutions) [39]. Thus,
they cannot guarantee Pareto optimality. The scalarization method converts multiple objectives
into a single objective with weighted summation and can achieve Pareto optimal solutions with
proper scalarization [31]. However, existing approaches that manually adjust the scaling factors
for each objective frequently fail to satisfy the necessary conditions for Pareto optimality. As a
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Table 1. Properties of Different Recommendation Approaches

Approaches & Collections
Consumer-Sided

Fairness
Producer-Sided

Fairness
Using Sensitive

Attributes
Adaptive Factor

Learning
Differentiable

Metrics
Pareto
Optimal

Accuracy-Centric Policy
[40, 42, 46, 47, 56, 76]

✗ ✗ N.A. N.A. ✗ N.A.

Consumer-Sided Fairness
[24, 30, 43, 70]

✓ ✗ ✓/✗ ✗ ✗ ✗

Producer-Sided Fairness
[1, 6, 53, 59, 72, 73, 85]

✗ ✓ ✓/✗ ✗ ✗ ✗

Two-Sided Fairness
[58, 75, 81]

✓ ✓ ✓/✗ ✗ ✗ ✗

Multi-FR (Ours) ✓ ✓ ✓ ✓ ✓ ✓

Our proposed method, Multi-FR, can model both the consumer-sided fairness and producer-sided fairness jointly in

one recommendation framework while incorporating sensitive attributes. Our fairness metrics are also differentiable

and friendly for back-propagation. Most significantly, our strategy is theoretically guaranteed to be Pareto optimal

with respect to all objectives and does not need handcraft tuning on the scaling factors.

result, it is still a challenge for current methods in achieving Pareto optimality when optimizing
multiple fairness objectives.
To address the aforementioned problems, we treat the multi-stakeholder fairness-aware recom-

mendation as a multi-objective optimization (MOO) task and propose a scalable framework,
namely Multi-FR. We summarize the differences between prior works and our work in Table 1.
As shown, our work is the first one that satisfies all the properties. Specifically, we propose a
method to differentiate four fairness metrics on the consumer side and the producer side, taking
into account different attributes within this framework. Thus, the fairness constraints can be di-
rectly optimized through back-propagation. We adopt the weighted summation to combine all
these fairness constraints as well as the objective for the recommendation accuracy into one uni-
fied framework. Thereafter, the multiple gradient descent algorithm (MGDA) along with the
Frank-Wolfe Solver [29, 69] are utilized to generate scaling factors regarding these fairness and rec-
ommendation objectives for satisfying the necessary conditions of Pareto optimality. It is worthy
to notice that the scaling factors can be adaptively updated during the training procedure with-
out handcraft tuning and the whole framework is trained in an end-to-end way. Finally, the most
appropriate solution is selected by the Least Misery Strategy [44, 60]. The experimental results
on three public datasets indicate that our method can well balance the recommendation quality
and fairness, and significantly outperform other state-of-the-art fairness-aware recommendation
methods on all the fairness metrics.
To summarize, our contributions are:

• We propose a general fairness-aware recommendation framework with the multi-objective
optimization, Multi-FR, which jointly optimizes accuracy and fairness for consumers and
producers in an end-to-end way. The final solution is guaranteed to be Pareto optimal theo-
retically.
• We leverage the multiple gradient descent algorithm with the Frank-Wolfe Solver to guaran-
tee that the scaling factors satisfy the necessary conditions of Pareto optimality. Furthermore,
these scaling factors are updated adaptively throughout the training procedure, eliminating
the need of manual-crafted search.
• We propose a method for differentiating the fairness criteria on both the consumer and
producer sides through utilizing the smooth rank and stochastic ranking policy, so that these
fairness constraints can be optimized directly and are friendly to back-propagation.
• Extensive experimental results on three public datasets comparing with three state-of-the-
art fairness-aware recommendation approaches demonstrate thatMulti-FR largely improves
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the recommendation fairness with little drop in terms of the recommendation quality. Fur-
ther analysis indicates the capability of Multi-FR in terms of optimizing multiple fairness
objectives concurrently with efficiency.

2 RELATEDWORK

In this section, we provide a summary regarding the related studies from the following three as-
pects: (i) the definition of fairness in recommendation systems, (ii) approaches to achieving fair-
ness, and (iii) recommendation with multiple objectives. We close this section by highlighting the
novelty and difference of our work compared to prior methods.

2.1 Definition of Fairness in Recommendation

Prior works on fairness in recommendation, from the perspective of stakeholders, consider algo-
rithmic effects on consumers (i.e., users who seek content) and producers (i.e., users who provide
content), independently or together.
On the consumer side, fairness refers to systematic differential performance [52] across con-

sumers. Some works focus on the individual fairness that ensures similar individuals are treated
similarly [23]. Other works define fairness on a group level and aim to make the system provide
comparable quality of service or utility to consumers within different demographic groups (e.g.,
gender, race, age) [25]. Chaney et al. [17] demonstrate, through simulation, that feedback loops in-
herent in the production system can exacerbate unfairness and homogenize recommendation. Yao
and Huang [84] demonstrate that these issues can be addressed by introducing fairness constraints
during the training process.
Other works focus on fairness on the producer side, whose fairness can be defined as the sys-

tematic differential exposure [6, 21, 53, 73] across content producers and, most often, groups of
producers (e.g., grouped by genre or popularity). For instance, Ekstrand et al. [26] find that stan-
dard recommendation algorithms may result in certain demographic groups of producers being
over- or under-represented in recommendation decisions. Beutel et al. [5] demonstrate that these
issues can be addressed in production systems by defining pairwise fairness objectives and intro-
ducing them as learning objectives.
Joint satisfaction for consumer-sided fairness and producer-sided fairness is an important re-

quirement for a healthy marketplace. To capture fairness for multisides, Burke et al. [13] introduce
the task of two-sided fairness and employ the sparse linear method (SLIM) [57] to address it. Patro
et al. [58] borrow notions from fair division [74] to model the two-sided fairness in recommen-
dation. Specifically, they ensure the envy-freeness-up-to-one on the consumer side and maximin
share guarantee of exposure on the producer side [12]. Both fairness is treated at an individual
level. Wu et al. [81] follow a similar way to model the individual fairness on both sides, where
they ensure each individual consumer obtains equal satisfaction and each individual producer ob-
tains equal (or proportional) exposure. Both of the above two works adopt algorithms similar to
Round-robin scheduling [2, 8, 15] to achieve the fairness in recommendation. Sühr et al. [75] ex-
periment with two-sided fairness in the context of ride-hailing platforms, where the two-sided
objective is a linear interpolation of consumer and producer fairness metrics, like other works.

2.2 Approaches to Achieving Fairness

Motivated by the idea of constructing multiple objectives in recommendation [36, 51], most works
on fairness in recommendation and ranking scenarios model the fairness as an extra loss. It
works as a supplement to the accuracy (quality) loss in the whole objective function [72, 73, 82],
followed by employing the scalarization technique. It is expected to achieve a Pareto optimal
recommendation [65, 66] when multiple objectives are concerned. However, existing studies
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mostly depend on manually assigning weights for scalarization, whose Pareto optimality cannot
be guaranteed.
Recent studies have proposed to use the adversarial learning and causal graph reasoning tech-

niques to achieve fairness in recommendation systems. For instance, Beigi et al. [4] propose an
adversarial learning-based recommendation model with attribute protection, which can protect
consumers from the private-attribute inference attack while simultaneously recommending rele-
vant products to consumers. Rahman et al. [63] find that the bias in recommendation is caused
by unfair graph embeddings and thus propose a novel fairness-aware graph embedding algorithm
Fairwalk to achieve the statistical parity. Bose and Hamilton [9] combine the adversarial training
with the graph representation learning together to protect sensitive features of consumers. They
introduce an adversarial framework to enforce fairness on graph embeddings. Similarly, Wu et al.
[79] propose a graph-based adversarial learning method, FairGO, to filter any sensitive informa-
tion hidden in the data representation, where the fairness requirement is defined as not to expose
sensitive features during the user modeling. The benefits of these algorithms lie in explicitly mod-
eling the fairness into the representation embeddings; however, the models are based on more
advanced techniques and they do not consider multisided fairness explicitly.
Fair Learning-to-Rank (LTR) is another popular research direction for achieving fairness in

the community nowadays, and several recent works have raised the question of group fairness in
rankings. Zehlike et al. [85] formulate the problem as a “Fair top-K ranking” that aims to guaran-
tee the occurrences of items within the protected group is above a minimum threshold in every
prefix of the top-K ranking list based on some pre-defined proportion. Celis et al. [16] propose a
constrained maximum weight matching algorithm for ranking a set of items efficiently under a
fairness constraint indicating the maximum number of items with each sensitive attribute being
allowed in the top positions. Most recently, some works break the parity constraints restricting the
fraction of items with each attribute in the ranking but extend the LTR methods to a large class of
possible fairness constraints. For instance, Biega et al. [6] aim to achieve amortized fairness of at-
tention by making exposure proportional to relevance through integer linear programming. Singh
et al. [72] propose a more general framework that can achieve both individual fairness and group
fairness solutions via a standard linear program and the Birkhoff-von Neumann decomposition [7].

2.3 Recommendation with Multiple Objectives

The studies on multi-objective optimization are rich and various approaches have been proposed
[19]. One significant characteristic of multi-objective optimization is that, usually, there does not
exist a solution that satisfies all the objectives simultaneously.
Some studies have consideredmultiple objectives in personalized recommendation tasks [36, 65].

For instance, Ribeiro et al. [65] construct multiple objectives including accuracy, diversity, and
novelty. And then a Pareto frontier is found to satisfy the mentioned objectives. However, manual
scalarization (grid search) is still required. Besides, to the best of our knowledge, there are few
studies on optimizing multiple objectives in group recommendation and we are among the first
to address the multi-stakeholder fairness problem in recommendation from the multi-objective
optimization perspective.

Novel and Difference to PriorWorks.Our study expands on prior works by studying interpolation-
free optimization of multi-stakeholder fairness problems. Compared to prior works, we highlight
the novelty and difference of our work as follows. First, we are the first to propose a general
framework for multi-stakeholder fairness-aware recommendation with theoretical guarantee that
the final solution is Pareto stationary (Pareto optimal under mild assumptions). Prior works hardly
satisfy the Pareto optimality. Second, we propose a way to differentiate the fairness metrics on
both the consumer side and the producer side, so that we can directly optimize these fairness
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Table 2. Description of Notations

Notations Description

U ,I The set of users and items
Du The set of training triplets
Li The ith objective
Θ Embeddings for users and items
α The scaling factor on each objective

b,K Batch size and the maximum length of the recommendation list
nC ,nP Number of groups on the consumer side and the producer side

t The total number of objectives in the model
m,n The number of fairness constraints on the consumer side and the producer side
li The relevance score between the ith item and the current query (user)
ri The rank of the ith item w.r.t. the current query
r̃i The smooth rank of the ith item w.r.t. the current query under the stochastic policy
γ User’s patience factor that controls the depth of browsing a list of items
τ Temperature that controls the smoothness of ranks under the stochastic policy

Y ∈ R |U |×|I | The binary relevance matrix between items and users
sGi ∈ RK The satisfaction representation for group Gi on the consumer side

mGi ∈ Rb The mask of group Gi on the consumer side

N ∈ Rb×K The matrix of NDCG@1 to NDCG@K for all the users in a batch
ϵ, ϵ∗ ∈ Rnp System exposure and target exposure on the producer side

R ∈ Rb×|I | Ranks for all items with respect to a batch of users

E,E∗ ∈ Rb×|I | System and target exposure matrix of all items w.r.t. a batch of users

c ∈ R |I | Group label of all items

constraints during the model training in an end-to-end way. However, most metrics defined in
prior works are not differentiable. Thus, they can only use a post-processing method to audit
the recommendation list after obtaining the relevance scores between users and items. Third, we
employ the Frank-Wolfe Solver and propose a method to learn the scaling factors on multiple
objectives adaptively during training. However, most prior works require additional scaling factor
tuning. In addition, we utilize the stochastic ranking policy, which is capable of distributing the
exposure among producers more equitably, whereas most prior works adopt the static ranking.

3 PRELIMINARIES

3.1 List of Notations

The notations we used in this paper are shown in Table 2.

3.2 Problem Formulation

We consider a top-K item recommendation task in this paperwhich takes the user implicit feedback
as input. We denote the set of all users and items asU andI, respectively. For each useru, the user
preference data is represented by a set of items he/she has interactedwith asI+u := {i ∈ I|Yu,i = 1}
where Y ∈ R |U |×|I | is the binary implicit feedback rating matrix. We then split I+u into a training
set S+u and a test set T +u , requiring that S+u ∪ T +u = I+u and S+u ∩ T +u = ∅. Then, the top-K
recommendation is formulated as: given the training item set S+u , and the non-empty test item set
T +u of user u, the model aims to recommend an ordered set of K items Xu such that |Xu | = K and
Xu ∩ S+u = ∅.
As aforementioned, our goal of this work is to well balance all of the following objectives on the

quality and fairness in an end-to-end recommendation framework. We employ the notion of group
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fairness [23] on both the consumer side and the producer side, which suggests treating different
groups in a fair way.

(1) Recommendation Accuracy. This is to ensure that the recommendation model is capable of
capturing consumers’ real preference. The recommendation quality can be evaluated by
a matching score between T +u and Xu , such as Recall@K or NDCG@K (Normalized Dis-
counted Cumulative Gain).

(2) Consumer-Sided Fairness. This is to guarantee that the consumers belonging to different de-
mographic groups receive the same level of satisfaction. Specifically, we aim to minimize the
group-level satisfaction difference between any two groups of consumers. The definitionwill
be detailed in Section 4.

(3) Producer-Sided Fairness. This is to avoid the producers belonging to minority groups receive
an extremely high/low opportunity of being exposed. Specifically, we aim to minimize the
difference between the current computed exposure (system exposure) and the ideal exposure
(target exposure) of producers. The definition will be detailed in Section 4.

4 OBJECTIVE CONSTRUCTION

In this section, we demonstrate the formulation of each objective: recommendation quality,
consumer-sided fairness, and producer-sided fairness, followed by offering the technical details
for making all of these objectives differentiable for an end-to-end training.1

4.1 Objective for Recommendation Quality

In order to ensure the recommendation quality, we adopt the Bayesian Pairwise Ranking (BPR)

model proposed by Rendle et al. [64]. Denoting those items that are unobserved by user u in S+u
as S−u := I \ S+u , we define a new training set in which each component is a triplet:

Du :=
{
(u, i+, i−) |i+ ∈ S+u ∧ i− ∈ S−u

}
. (1)

Then the goal of the recommendation model is to generate a total ranking >u of all items for each
user u. The binary relation >u is required to be a total order on the set of items I. The relation
i+ >u i− specifies that user u prefers item i+ over item i−. Thereby, we aim to maximize:

p
(
Θ|{>u }Du

) ∝ p ({>u }Du
|Θ) p (Θ), (2)

whereΘ = �ΘU ,ΘI � is the model parameter containing the user and item embeddings, and {>u }Du

denotes the observed preferences in the training data. We aim to identify the parameters Θ that
maximize this posterior over all users and all pairs of items. Assuming that users act independently,
we have:

p
({>u }Du

|Θ) = ∏
(u,i+,i− )∈Du

p
(
i+ >u i−|Θ) . (3)

We define the probability that a user prefers item i+ over item i− as:

p
(
i+ >u i−|Θ) = σ (x̂ui+ (Θ) − x̂ui− (Θ)) , (4)

1In this article, we use producer-sided fairness to represent the fairness on the item side, although the producer informa-

tion is not provided in most datasets. There are two reasons for choosing this term: (1) We would like to make the term

consistent with prior works [53, 75, 81] in community; (2) People are building systems for humans not for items: achieving

fairness on items actually benefits the producers. We will collect the supplier/producer information of items in future work.

Additionally, user and consumer share the same meaning throughout the remainder of this article.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 47. Publication date: December 2022.
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Table 3. Four Attribute-Based Fairness Constraints on the

Consumer Side and the Producer Side

Stakeholder Attribute-based Fairness Constraints

Consumer Gender-based Age-based
Producer Popularity-based Genre-based

where x̂ui (Θ) = 〈ΘU
u ,Θ

I
i 〉 , denoting the inner product between two embeddings. If we adopt a

normal distribution as the prior for p (Θ), then we can formulate the optimization objective as:

LAccuracy = argmax
Θ

lnp
(
Θ|{>u }Du

)

= argmin
Θ

∑
(u,i+,i− )∈Du

− lnσ (x̂ui+ (Θ) − x̂ui− (Θ)) + λΘ | |Θ| |22 . (5)

We can optimize this via stochastic gradient descent by repeatedly drawing triples (u, i+, i−) ran-
domly from the training set and updating the model parameter Θ.

4.2 Fairness Objectives for Multi-Stakeholder

Fairness attracts more attention in current information retrieval systems, which has a huge impact
on the multi-stakeholder marketplaces. In our proposed framework, we resort to group fairness on
both the consumer (user) side and the producer (item) side.We define four fairness constraints (two
for each side) with respect to different attributes in our model which are summarized in Table 3.

4.2.1 Consumer Fairness Constraint. It has been shown that sensitive features affect the satis-
faction of consumers in recommendation [87]. For instance, Ekstrand et al. [25] and Neophytou
et al. [55] demonstrate that recommendation performance can vary across demographic groups
and Mehrotra et al. [52] report similar observations in the context of web search. For addressing
this, the fairness of consumers is generally defined as the fairness in quality of service, such as
ensuring those consumers belonging to different demographic groups (with different sensitive fea-
tures) experience comparable recommendation quality. In this work, we follow the similar line to
model the group fairness on the consumer side. Specifically, we aim to make the satisfaction of
different groups with sensitive features be ideally equal. Here we adopt the NDCG@K , a widely
used ranking metric, to measure the satisfaction of consumers.
However, since items ranked at higher positions generally receive more attention from con-

sumers, we argue that the fairness at each prefix of the ranking is also significant. As a result,
solely considering the recommendation equality for an entire ranking list is not enough. Thereby,
we construct the sGi ∈ RK as a satisfaction vector for the group Gi among the consumers, where
the kth entry of sGi equals to NDCG@k , k = 1, . . . ,K . Assuming there are nC groups among the
consumer side, the fairness constraint on a group level can be defined as the mean of the pair-wise
satisfaction difference across all groups:

LC−Fair =
1(
nC

2

) ∑
1≤i<j≤nC

‖sGi − sG j ‖22 , (6)

where
(
nC

2

)
is the number of combinations between different groups.

More specifically, considering a batch of b users (consumers), we define the satisfaction of group
Gi as:

sGi =
mGi · N
| |mGi | |1

, (7)

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 47. Publication date: December 2022.
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wheremGi ∈ Rb is a multi-hot vector,N ∈ Rb×K is a matrix containing NDCG@1 to NDCG@K for
all users in a batch. The method of computing the NDCG values in a differentiable way is detailed
in Section 4.3. The denominator is used to compute the number of users in the group Gi .

It is worthy to notice that any kinds of attributes can be adopted for defining the mask mGi in
Equation (7). In this work, we focus on two types of disparities regarding the two most common
and sensitive attributes on the consumer side.

Gender-Based Fairness.Gender is one of themost sensitive attributes of humans andmanyworks
have already presented insightful observations and analysis on gender bias in Internet services [14,
37]. Thus, we construct the gender maskmG1 andmG2 for females and males and aim to minimize
the satisfaction difference between these two groups. Note that gender is treated as a binary class
due to the available labels in the datasets. We do not intend to suggest that gender identities are binary,
nor support any such assertions.

Age-Based Fairness.Other than gender, we also consider fairness with respect to the age attribute.
We split the age into 7 stages (0-17, 18-24, 25-34, 35-44, 45-49, 50-55, 56+) following the criterion in
theMovieLens datasets [33] and constructmGai as themask for the ith age group. Then optimizing
the age-based fairness is to minimize the difference of satisfaction for all age groups, as described
in Equation (6).

4.2.2 Producer Fairness Constraint. Previous works in recommendation mainly assume that the
users are the only stakeholder in a recommendation system; however, the items should also be
taken into consideration since they represent the benefits of the producers [58, 75], which are an
equally significant stakeholder in a commerce marketplace. Thus, we model the producer-sided
fairness to guarantee the satisfaction of producers.
In comparison to consumers, producers are more concerned with profits in these marketplaces,

which are highly related to the exposure of their products/items. Unfair exposure distribution on
items may make certain producers unsatisfied and hence leave the platform. This may reduce the
market’s diversity, which in turnmay harm the consumers’ utility. Therefore, for the group fairness
on producers, the goal is to find a ranking strategy that can offer a fair probability of exposure on
items based on their merits. However, one of the key challenges, as mentioned in [21], is that
a single fixed ranking for a query (in retrieval) or user (in recommendation) tends to limit the
ability of an algorithm to distribute exposure amongst relevant items. For a static ranking, (i) some
relevant items may receive more exposure than other relevant items and (ii) some irrelevant items
may receive more exposure than other irrelevant items. Therefore, we aim to find a policy that
samples a permutation from a distribution over the set of all permutations of |I | items, and such
a stochastic ranking policy should be able to force all items to receive a fair exposure proportional
to their merits, thus achieving fairness with respect to the exposure of items in expectation.
Assuming there are nP groups among all items, the fairness constraint on the producer side can

be defined as the difference between two exposure vectors:

LP−Fair = ��ϵ − ϵ∗��22 , (8)

where ϵ ∈ RnP is a vector representing the distribution of exposure on items from different groups,

ϵ∗ ∈ RnP is the ideal exposure distribution proportional to the true relevance of items. We refer to
the ϵ and ϵ∗ as the system exposure and target exposure of the system, respectively. Hereafter, we
demonstrate how to model ϵ and ϵ∗.
For computing the system exposure ϵ , we need to first rank all the |I | items for b users in a

batch based on the relevance score. Under a static ranking policy, this is generally achieved by
sorting the items in a descending order based on the predicted preference score between users
and items. We can thus obtain a matrix R ∈ Rb×|I | containing the ranks of all items for b queries
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(users). (As noted before, we are interested in a stochastic policy instead. The method for obtaining
the matrix R under a stochastic policy will be detailed in Section 4.3.) To compute the exposure,
we adopt a well-known user browsing model, the position-based model [21, 54], that assumes a
user’s probability of visiting a position decreases exponentially with the rank. Then we compute
the exposure of all items in a batch as E = γ R ∈ Rb×|I | , where γ represents the patience factor
that controls how deep a user is likely to browse in a ranked item list.
We denote the group label on all items in I sorted by the item ID as c ∈ R |I | , where each entry

contains the group label that the corresponding item belongs to. However, the items are displayed
in different orders for each user, we thus denote the group label of items ranked for the ith user
based on the ranking order as ci ∈ R |I | , which is a permutation of c . Then, the ϵ is computed as:

ϵk =

∑b
i=1

∑
1c i

j
=k
Ei j

b · | |1c j=k | |1
. (9)

Here, the 1c j=k is the indicator vector, where a “1” at position j refers to c j = k and a “0” otherwise.
The kth entry of ϵ contains the average exposure on all items belonging to the kth group.

As for the target exposure ϵ∗, we assume all relevant items should have the same high probability
of being selected to the top of the ranking, while other irrelevant items should equally share the
rest amount of exposure at a low level. Given the binary relevance label in the training set as
Y ∈ R |U |×|I | , we assume the number of relevant items for each query (user) is ti , which is obtained
through counting the number of ones in each row of Y . Then, the target exposure of all items in a
batch can be computed as:

E∗i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

ti

∑
m∈[1,ti ]

γm , if Yi j = 1,

1

|I | − ti

∑
m∈[ti+1, |I |]

γm , otherwise.

(10)

Thus, we can construct the target exposure in a similar way as Equation (9):

ϵ∗k =

∑b
i=1

∑
1c i

j
=k
E∗i j

b · | |1c j=k | |1
. (11)

Then, we can use Equations (8), (9), and (11) to optimize for the producer-sided fairness.

We consider two types of group fairness constraints on the producer side. Both are based on the
same framework defined in Equation (8), while the only difference lies in the different construction
of the group label c during the modeling.

Popularity-Based Fairness. The “superstar economics” [3, 53] always occurs in real-world recom-
mendation scenarios, where a small number of most popular artists/items/products possess most
of the attention of consumers. Amajor side-effect of the “superstar economics” is the impedance to
producers on the tail-end of the spectrum, who struggle to attract consumers and are not satisfied
with the marketplace.

To construct the popularity-based group label, we rank all the |I | items based on their occur-
rences in the dataset from the highest to the lowest and evenly split them into five groups labeled
from 4 to 0, where each group contains 20% of items.

Genre-Based Fairness. We do not expect any specific genre of items to receive too much or
too little exposure in a marketplace; therefore, genre-based fairness is also worthy of taking into
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consideration. We only use the MovieLens datasets to investigate this fairness and make use of all
the 18 movie genres in the datasets [33].

4.3 Differentiable Approximation of the Ranking

In our formulation, relevance is defined as a function of item rankings, but the sorting operation is
inherently non-differentiable. To mitigate this problem, we adopt the continuous approximation
of the ranking function proposed in [62] and [80] that is amenable to gradient-based optimization.
The key insight behind these approximations lies in defining the rank of an item in terms of the
pairwise preference with every other item in the collection:

ri = 0.5 +

n∑
j

σ ′(lj − li ), where σ ′(x ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if x > 0

0.5, if x = 0

0, if x < 0

. (12)

Here the li is the relevance score between the ith item to the query (user), which is computed
through the inner-product between the user embedding and the item embedding. The discrete
function σ ′(·) is typically approximated using the differentiable sigmoid function.

Given the approximated differentiable ranks of items, it is then straightforward to derive an op-
timization objective for standard relevance metrics—e.g., discounted cumulative gain (DCG)—
that can be directly optimized using the gradient descent. Assuming that we consider the items in
a ranking up to position K , then the SmoothDCG is defined as:

SmoothDCG =

K∑
i=1

li
log2 (ri + 1)

. (13)

Therefore, we adopt the normalized version of such SmoothDCG when constructing the fairness
objective in Equation (7) on the consumer side during training, but still use the original NDCG in
the evaluation phase.
As for the producer side, in order to mitigate the similar non-differentiable operation when

constructing the ranking position matrix R and also adopt a stochastic ranking policy rather than
a static one, we use the Plackett-Luce model [61] for constructing a ranking by sampling items
sequentially, followed by adopting the Gumbel Softmax technique proposed in [11] and [48]. For
a single query (user), we recall that the sampling probability of an item by using a static Plackett-
Luce policy [61] is:

pi =
exp(li )∑
j ∈I exp(lj )

. (14)

As aforementioned, the static policy will limit the ability of the ranking algorithm for fairly dis-
tributing the exposure. Thus, what the stochastic ranking policy specifically performs here is: (i)
reparameterizing the probability distribution by adding independently-drawn noise ζ sampled
from the Gumbel distribution to l and (ii) sorting items by the “noisy” probability distribution p̃i :

p̃i =
exp(li + ζi )∑
j ∈I exp(lj + ζj )

. (15)

However, the sorting operation itself is non-differentiable either. To address this, we instead com-
pute the smooth rank [80] for each item in the ranking as follows:

r̃i =
∑

j ∈I, j�i

(
1 + exp

(
p̃i − p̃j

τ

))−1
, (16)
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where the temperature τ is a hyperparameter that controls the smoothness of the approximated
ranks. Then the exposure E in Equation (9) is computed based on this smooth rank.
We now achieve a differentiable way for modeling both the consumer-sided fairness and the

producer-sided fairness for an end-to-end training.

5 MULTI-FR: MULTI-STAKEHOLDER FAIRNESS-AWARE RECOMMENDATION

In this section, we introduce our proposed framework, Multi-FR, for fairness-aware recommen-
dation in multi-stakeholder marketplaces. In conventional recommendation systems, the main
aim lies in satisfying consumers. However, it has been shown in recent studies [58] that solely
optimizing the satisfaction of consumers may jeopardize the benefits of producers who are es-
sential participants in two-sided markets. Thus, to achieve a personalized, satisfactory, and fair
recommendation simultaneously in one joint framework is significant in both academia and
industry.
Traditionally, these aspects are modeled as specific objectives and combined by summation with

manually set scaling factors. However, utilizing hand-crafted factors has two major drawbacks.
First, these scaling factors incur tedious hyper-parameter tuning. This would cost many trials
and substantial computation resources to identify appropriate scaling factors, especially when the
number of objectives is huge. Second, each objective in the summed objective function may need a
different magnitude of scaling values in the training process. Setting one fixed value is not capable
of dynamically balancing all of these objectives well during the training process.
To tackle the aforementioned problems, we treat the fairness-aware recommendation as a multi-

objective optimization problem and propose a framework for optimizingmultiple objectives jointly.
Before diving into the final framework, we start from providing some major techniques and
theoretical guarantees in the multi-objective optimization in order to better illustrate the entire
picture.

5.1 Multi-Objective Optimization

A multi-objective optimization task is usually defined as optimizing a set of possibly conflicting
objectives. Given a set of objectives, theMOOaims to find a solution that can optimize all objectives
simultaneously:

min
θ
L (θ ) = min

θ c

θ s1, ...,θ st

L (θc ,θ s1 , . . . ,θ st ) = min
θ c

θ s1, ...,θ st

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1 (θ
c ,θ s1 )

L2 (θ
c ,θ s2 )
...

Lt (θ
c ,θ st )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ᵀ

, (17)

where L is the full objective, L1, . . . ,Lt are t different objectives, respectively. θ
c is the common

parameter shared by all objectives, while θ s1 , . . . ,θ st are the objective-specific parameters.
Notice that one of the key characteristics of anMOO problem is that a solution that can optimize

each objective to an ideal situation may not exist. This is exactly due to the conflict and correlation
among the objectives as discussed before. The optimal solution of anMOO problem should balance
all the objectives, which is called the Pareto optimality.

Definitin 1 (Pareto Optimality).

(1) A solution θ1 dominates another solution θ2 if for all objectives Li (θ
c
1 ,θ

si
1 ) ≤ Li (θ

c
2 ,θ

si
2 ),

where i ∈ {1, . . . , t }, and there exists at least one objective j ∈ {1, . . . , t }, whereLj (θ
c
1 ,θ

sj
1 ) <

Lj (θ
c
2 ,θ

sj
2 ).

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 47. Publication date: December 2022.



A Multi-Objective Optimization Framework 47:13

(2) A solution is of Pareto optimality if there does not exist any other solution that dominates
it. In this case, we also call the solution is Pareto optimal.

(3) There is usually more than one solution being Pareto optimal in an MOO problem. The set
of such solutions is called Pareto set, which is the solution set of an MOO problem. The
curve of the points in the Pareto set is called the Pareto frontier.

5.2 Multiple Gradient Descent Algorithm

The multiple gradient descent algorithm (MGDA) [20] is one of the most effective methods
for MOO. It can reach an optimal point for all objectives with theoretical guarantee. Borrowing the
idea from the gradient descent on a single objective, the MGDA can be regarded as an extension
of the gradient-based algorithm on multiple objectives. The overall objective of solving an MOO
problem by MGDA is usually a weighted summation of t single objectives, defined as:

L (θ ) = L (θc ,θ s1 , . . . ,θ st ) =
t∑
i=1

αi · Li (θ
c ,θ si ) , (18)

where the coefficients of all the objectives satisfy
∑t

i=1 αi = 1 and αi ≥ 0, for i = 1, . . . , t .
It is hard to find direct conditions for Pareto optimality. Therefore, we introduce the Pareto

stationarity, which is a necessary condition for Pareto optimality in an MOO problem [20, 28, 67].
A Pareto optimal solution must be Pareto stationary, while the reverse may not hold.

Definitin 2 (Pareto Stationarity). A solution θ ∗ is of Pareto stationarity if it satisfies all of the
following conditions:

(1)
∑t

i=1 αi = 1, αi ≥ 0, for i = 1, . . . , t ,
(2)
∑t

i=1 αi∇θ ∗cLi (θ
∗c ,θ ∗si ) = 0,

(3) ∇θ ∗si Li (θ
∗c ,θ ∗si ) = 0, for i = 1, . . . , t .

The above conditions are also known as the Karush-Kuhn-Tucker (KKT) conditions, which
was first proposed by Kuhn and Tucker [41].

The MGDA leverages the KKT conditions to solve the MOO problem, which are necessary for
optimality. Sener and Koltun [69] propose to solve a quadratic-form constrained minimization
problem defined as follows:

min
α1,α2, ...,αt

������
t∑
i=1

αi · ∇θ cLi (θ
c ,θ si )

������
2

2

,

s.t.,

t∑
i=1

αi = 1,αi ≥ 0, for i = 1, . . . , t .

(19)

Given Equation (19), there are two situations for the final solution: the final solution is Pareto
stationary if the solution to this optimization problem makes the Euclidean norm equals to 0;
otherwise, the solution offers a common descent direction which benefits all the objectives as
proved by [20]. Therefore, one can use the single-objective gradient descent for optimizing the
objective-specific parameters θ si on t different objectives and employ the obtained solution to the
above equations for updating the common parameters θc .

5.3 Solving the MOO Problem

We first introduce a special case where there are only two objectives in the loss function:

min
α ∈[0,1]

��α · ∇θ cL1 (θ
c ,θ s1 ) + (1 − α ) · ∇θ cL2 (θ

c ,θ s2 )��22 . (20)
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ALGORITHM 1: Frank-Wolfe Solver [29, 35, 69]

Input: t ← number of objectives

θ ← model parameters: (θc ,θs1 , . . . ,θst )
Output: A list of learned scaling coefficients: α1, . . . , αt

1 Random Initialization: α = (α1, . . . ,αt ) satisfying the constraints in Equation (19).

2 PrecomputeM , ∀i, j ∈ {1, . . . , t } :
3 Mi j = (∇θ cLi (θc ,θsi ))ᵀ (∇θ cLj (θ

c ,θsj ))

4 repeat

5 i∗ = argminr
∑
i αiMr i

6 w∗ = argminw (wei∗ + (1 −w )α )ᵀM (wei∗ + (1 −w )α ) ←Using Procedure 1

7 α = w∗ei∗ + (1 −w∗)α (ei∗ is the unit vector)

8 untilw∗ converge or maximum iteration reaches;

9 return α = (α1, . . . ,αt )

Procedure 1: Solving argminw ∈[0,1] | |wx1 + (1 −w )x2 | |22
1 w∗ = (x2−x1 )ᵀx2

| |x1−x2 | |22
2 w∗ = max(min(w∗, 1), 0)
3 returnw∗;

The analytical solution to this quadratic problem is:

α∗ =
(∇θ cL2 (θ

c ,θ s2 ) − ∇θ cL1 (θ
c ,θ s1 ))ᵀ ∇θ cL2 (θ

c ,θ s2 )

‖∇θ cL1 (θc ,θ s1 ) − ∇θ cL2 (θc ,θ s2 )‖22
, (21)

where the α∗ should be clipped into [0, 1] as α∗ = max(min(α , 1), 0).
Although there are no analytical solutions for more than two objectives in an MOO problem,

we can still borrow the analytical solution of two objectives to conduct the line search efficiently.
This technique was proposed by Jaggi [35] to accelerate the convergence of the Frank-Wolfe
algorithm [29]. Specifically, as shown in Algorithm 1, the procedure with the same idea of Equa-
tion (21) is regarded as a subroutine to compute thew∗ on line 6. The scaling factors generated by
the Frank-Wolfe Solver satisfy the KKT conditions aforementioned.

5.4 The Multi-FR Framework and the Overall Objective

Thereby, we propose theMulti-FR framework to utilize the scaling factors that satisfy the KKT con-
ditions to generate Pareto stationary (can be regarded as Pareto optimal under mild assumptions
in real world) solutions which can smoothly balance the recommendation quality and multisided
fairness. The algorithm is shown in Algorithm 2. It is worthy to mention that all the three tasks in
this work described in Section 3.2 require the same parameters (user embeddings and item embed-
dings) for computing the relevance scores between users and items, and there are no task-specific
parameters. Thus, we omit θ s and set the model parameter θ = θc = Θ = �ΘU ,ΘI �. As a result,
we generate all objectives using the unified parameter, which is the Θ including user and item
embeddings.
For building the overall training objective, we use the weighted summation framework fol-

lowing [27, 38, 83] since this is the most common choice in optimizing multiple objectives. The
weighted summation is a convex combination of objectives and each single objective optimiza-
tion determines one particular optimal solution point on the Pareto frontier. For ensuring the final
solution is Pareto stationary (Pareto optimal under mild assumptions), we adopt Algorithm 1 to
adaptively compute the scaling factors α that satisfy the convex constraints in KKT conditions as
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ALGORITHM 2: Multi-FR Framework

1 Initialization( )

2 for i ∈ 1, . . . , t do
3 Construct the individual objective Li (Θ) for each task

(The objective for recommendation quality and the fairness constraints)
4 end

5 for epoch ∈ 1, . . . ,nepoch do

6 for batch ∈ 1, . . . ,nbatch do

7 Forward_Passing( )

8 for i ∈ 1, . . . , t do
9 Compute the gradient for each objective: ∇ΘLi (Θ)

10 Gradient_Normalization( ) (optional)

11 end

12 α = (α1, . . . ,αt ) ← Using Algorithm 1

13 Construct the single aggregated objective: L (Θ) = ∑ti=1 αi · Li (Θ)
14 ∇ΘL (Θ) =

∑t
i=1 αi · ∇ΘLi (Θ)

15 Update Θ

16 end

17 end

18 return Θ that can lead to Pareto stationarity / Pareto optimality on quality and fairness

aforementioned. Thus, our overall training objective can be formulated as follows:

L =αA · LAccuracy +

m∑
i=1

αCi · LC−Fair
i +

n∑
j=1

αP
j · LP−Fair

j ,

s.t., αA +
m∑
i=1

αCi +
n∑
j=1

αP
j = 1.

αA ≥ 0,αCi ≥ 0,αP
j ≥ 0,∀i, j .

(22)

Here,m and n refer to the number of fairness constraints on the consumer and producer sides,
respectively.
It is worth noticing that our proposedMulti-FR framework does not rely on specific formulations

of the loss functions or themodel structures. Although the aforementioned four disparitymeasures
belong to the group fairness, one can also define any individual fairness objectives and scalably
integrate them into our framework as long as they are differentiable.

5.5 Solution Selection

There is no consensus strategy on choosing one single Pareto optimal solution from a Pareto set
since any solution in the Pareto set cannot strictly dominate the others. To select a proper solution,
we borrow the idea from one of the most well-known metrics in Theoretical Economics, the Least
Misery Strategy [60], for guiding us to select a “fair” solution for all the objectives. Lin et al. [44]
also adopt this criteria to select the final Pareto optimal solution. The main idea is that we do not
want the worst objective to be too bad.

Motivated by the Least Misery Strategy, our final solution aims to choose the solution coming
from the q’th round that minimizes the highest loss value across all the objectives:

min
1≤q′ ≤q

max
{
Lq′

1 ,L
q′

2 , . . . ,L
q′

t

}
, (23)
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Table 4. The Statistics of Datasets

MovieLens100K MovieLens1M FM-reduced

#User 943 5,805 19,234
#female/#male/#age 273/670/7 1,655/4,150/7 4,022/15,212/7

#Item 1,682 3,574 9,703
#genre/#popularity 18/5 18/5 -/5

#Interaction 100,458 678,740 1,049,322
Density 6.33% 3.27% 0.56%

where t is the total number of objectives in the model and q is the total number of running rounds.
The t here can be defined as any positive integer depending on the number of objectives to model
in regarding to the consumer-sided fairness and the producer-sided fairness. The superscript q′

indicates the q’th round. Therefore, given a generated Pareto frontier by running Algorithm 1 and
Algorithm 2 for q rounds (q = 5) in our proposed model, we pick the solution coming from the
round q′ with the minimum value of Equation (23) as the final recommendation.

6 EXPERIMENTS

In this section, we evaluate the proposed model and other baseline methods on three real-world
datasets.

6.1 Datasets

The proposed model is evaluated on three real-world datasets from various domains with differ-
ent sparsities: MovieLens100K,2 MovieLens1M3 [33], and FM-reduced.4 MovieLens100K and Movie-
Lens1M are user-movie datasets collected from theMovieLens website. These two datasets provide
100 thousand and 1 million user-movie interactions, respectively, with the user metadata (gender
and age group) and movie genres. The FM-reduced dataset is collected from the last.fm website,
which contains the music listening records of 360 thousand users along with the gender and age
of users. The original version of this dataset is too large to run themajority of previously developed
fairness-aware algorithms, as it would take a huge consumption both in time and space. In order
to make the experiments able to be conducted on all baselines, we reduce the size of the dataset by
first randomly selecting 25,000 users. Under the implicit feedback setting, we keep those ratings
no less than four (out of five) as positive feedback and treat all other ratings as missing entries for
all datasets. To filter noisy data, we only keep the users with at least ten ratings and the items at
least with five ratings.
We adopt the age group strategy of the MovieLens dataset to split users into 7 different age

groups and the movies into 18 different genres in all experiments. For all the datasets, we also
group the items into 5 different groups based on their popularity. For each user, we randomly split
70%, 10%, and 20% of the rated items as the training set, validation set, and testing set, respectively.
The statistics for the datasets after preprocessing are shown in Table 4.

6.2 Evaluation Metrics

In this section, we demonstrate our chosen metrics on the recommendation accuracy, fairness, and
diversity. We adopt both self-defined metrics and commonly used measurements in academia. Our
measurement of fairness and diversity covers the individual level, group level, and system level.

2https://grouplens.org/datasets/movielens/100k/.
3https://grouplens.org/datasets/movielens/1m/.
4http://ocelma.net/MusicRecommendationDataset/lastfm-360K.html.
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Metrics for Measuring Recommendation Accuracy

• Recall@K , which indicates the percentage of her rated items that appear in the top-K rec-
ommended items. The greater the value of this metric, the higher the quality of the model.
• NDCG@K , which is the normalized discounted cumulative gain at K , which takes the posi-
tion of correctly recommended items into account. The greater the value of this metric, the
higher the quality of the model.

Self-Defined Metrics for Measuring Fairness

• Disparityu measures the unfairness on the user side, i.e., Equation (6). The smaller the value
of this metric, the higher the consumer-sided fairness of the model.
• Disparityi measures the unfairness on the item side, i.e., Equation (8). The smaller the value
of this metric, the higher the producer-sided fairness of the model.

General Metrics for Measuring Fairness and Diversity

• Gini Indexmeasures the inequality among values of a frequency distribution [22], e.g., num-
bers of occurrences (exposures) in the recommendation list. This measurement is at individ-
ual level. Given a list of exposure of all items (I) aggregated over all the recommendation
lists, le = [e1, e2, . . . , e |I |], the Gini Index is calculated as below5:

Gini(le ) =
1

2|I |2e

|I |∑
i=1

|I |∑
j=1

|ei − ej |, (24)

where e is the mean of all item exposures. The smaller the value of the Gini Index, the higher
the fairness of the model.
• Popularity Rate computes the proportion of popular items in the recommendation list
against the total number of items in the list, which can be regarded as a group-level measure-
ment. The smaller the value of the popularity rate, the higher the fairness of the model.
• Simpson’s Diversity Index was introduced in 1949 by Edward H. Simpson to measure the
degree of concentration when individuals are classified into types [71]. This is suitable for
the scenario of recommendation since items are generally categorized into different groups.
This metric was also adopted before by Zhou et al. [86] for measuring the diversity in rec-
ommendation. Therefore, we employ this metric as a system-level measurement of diversity
that takes into account the number of groups present, as well as the relative abundance of
each group. Given a list of exposures of all items in the recommendation results and the
group label of each, the Simpson’s diversity index can be formulated as:

Diversity = 1 − ��
∑д

i=1 ni (ni − 1)
N (N − 1)

�
� , (25)

where д is the total number of groups, ni is the total number of items of group i , and N is
the total number of items of all groups. This diversity index can also be interpreted as the
probability that two randomly sampled items (without replacement) do not belong to the
same group. The greater the value of this metric, the higher the diversity of the system.

5It is worthy to notice that, for Gini Index, there exist multiple alternative expressions [49, 77]. Here we adopt the most

widely used version as demonstrated in book [68] and paper [30]. The main difference between these definitions lies in

whether to compute the coefficient with direct reference to the Lorenz curve [45].
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6.3 Method Studied

We choose three models as our recommendation backbones:

• BPRMF, Bayesian Personalized Ranking-based Matrix Factorization [64], which is a classic
method for learning pairwise personalized rankings from user implicit feedback.
• WRMF, Weighted Regularized Matrix Factorization [34], which minimizes the square error
loss by assigning both observed and unobserved feedback with different confidential values
based on matrix factorization.
• NGCF, Neural Graph Collaborative Filtering [78]. This method integrates the user-item inter-
actions into the embedding learning process, and exploits the graph structure by propagating
embeddings on it to model the high-order connectivity.

We first adopt the above three backbones to learn the latent representation of users and items
and obtain the relevance scores between them. Then we adopt the following three fairness-aware
approaches on the top of the three backbones to achieve fair recommendation for a comparison
with our proposed method.

• FOEIR, Fairness of Exposure in Rankings [72], which is a fairness-aware algorithm incorpo-
rating a standard linear program and the Birkhoff-von Neumann decomposition [7].
• FairRec, which is a two-sided fairness-aware method achieving envy-freeness up-to-one on
the user side and exposure guarantee on the item side [58]. It is motivated by the fair alloca-
tion [10] and adopts the Greedy-Round-Robin algorithm [8, 15] to allocate item candidates
to users.
• TFROM, which is a two-sided fairness-aware method ensuring individual fairness on both
consumers and producers [81]. It also uses scheduling algorithm for conducting the recom-
mendation.

Here, we summarize how the fairness criteria are defined in these fairness-aware recommen-
dation approaches. FOEIR is a ranking model for search, thus it does not model consumer-
sided fairness. It considers three types of fairness on the producer side: (1) Demographic Parity:
E (G1) = E (G2), which ensures that the exposure (E) obtained by different demographic groups

be equal; (2) Disparate Treatment:
E (G1 )
U (G1 )

=
E (G2 )
U (G2 )

, which ensures that the exposure (E) should be

proportional to the utility (U ) of members in each group; (3) Disparate Impact: CTR (G1 )
U (G1 )

=
CTR (G2 )
U (G2 )

,

which cares more about the final effect and ensures that the click-through rate (CTR) of items be-
longing to different groups should be proportional to the utility (U ). In our experiment, we choose
the Demographic Parity as the fairness constraint of FOEIR. FairRec uses the envy-freeness-up-
to-one (EF1) good to define the individual fairness on the consumer side:vu1 (Au1 ) ≥ vu1 (Au2\p).
This definition comes from the fair allocation, which is a sub-field of economics. Here vu1 (Au1 )
denotes the amount how u1 values his obtained allocation (recommended items) Au1 , and p is
any item in another user u2’s allocation Au2 . For the producer-sided fairness, the authors define
it as ensuring a (self-defined) minimum threshold of exposure for all items. TFROM still defines
an individual fairness on the consumer side as ensuring the NDCG values of any two users are
equal: NDCGu1 = NDCGu2 . The authors define two producer-sided fairness criteria both at an

individual level: (1) Uniform Fairness:
E (p1 )
|Ip1 |
=

E (p2 )
|Ip2 |

, which ensures that the exposure of each indi-

vidual producer should be proportional to the number of items (|I |) she offers; (2) QualityWeighted

Fairness:
E (p1 )
Q (Ip1 )

=
E (p2 )
Q (Ip2 )

, which ensures that the exposure of each individual producer should be

proportional to the quality (Q) of items she offers. We summarize all these fairness criteria in
Table 5.
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Table 5. Definitions of Fairness in the Three Fairness-Aware Approaches We Selected for Comparison

Approach Consumer-sided Fairness Producer-sided Fairness

FOEIR [72] N.A.

Group Fairness

Demographic Parity: E (G1) = E (G2)

Disparate Treatment:
E (G1 )
U (G1 )

=
E (G2 )
U (G2 )

Disparate Impact:
CTR (G1 )
U (G1 )

=
CTR (G2 )
U (G2 )

FairRec [58]
Individual Fairness Group Fairness

EF1: vu1 (Au1 ) ≥ vu1 (Au2\p) Guarantee a threshold of exposure for all producers

TFROM [81]
Individual Fairness Individual Fairness

NDCGu1 = NDCGu2

Uniform Fairness:
E (p1 )
|Ip1 |
=

E (p2 )
|Ip2 |

Quality Weighted Fairness:
E (p1 )
Q (Ip1 )

=
E (p2 )
Q (Ip2 )

The definitions of notations are elaborated in Section 6.3.

Last, we adopt our proposed MultiFR method on the top of the BPRMF, WRMF, and NGCF
to form our final model. Our method allows the weights on different objectives to be adaptively
learned during the training process with the model embeddings.

6.4 Experiment Settings

In the experiments, we optimize all models using the Adam optimizer with the Xavier ini-
tialization [32]. The embedding size is fixed to 50 and the batch size to 1024 for all base-
line models. The learning rate and the regularization hyper-parameter are selected from
{1e−1, 1e−2, 1e−3, 1e−4, 1e−5}. The patience parameter γ is selected from {0.5, 0.6, 0.7, 0.8}. The
smooth temperature in SmoothRank is selected from {1e−1, 1e−2, 1e−3}. The K value in NDCG@K
used for computing the consumer-side fairness described in Section 4.2.1 is set as 20. For all the
datasets, we randomly sample one unobserved item as the negative sample for each user to speed
up the training process. Further, for the FOEIR model, since it requires to solve a linear program
with size |I | × |I| for each consumer with huge computational costs, we rerank the top-100 items
from the base model then select the new top-K (K < 100) as the final recommendation. Early
stopping strategy is performed, i.e., permutate stopping if Recall@20 on the validation data does
not increase for 50 successive evaluation steps, for which the evaluation process is conducted for
every five epochs. All experiments are conducted with PyTorch running on GPUmachines (Nvidia
Tesla P100).

6.5 Experimental Results and Analysis

6.5.1 Overall Performance Comparison. The overall experiments on three datasets are reported
in Tables 6–8, respectively. In each block, bold scores are the best for each metric, while underlined
scores are the second best.
Our model achieves obvious and significant improvements regarding all the fairness and diver-

sity metrics. For instance, on theMovieLens100K dataset, considering the top-10 recommendation,
BPRMF-MultiFR reduces the disparity on the user side by 27.27% and 32.12% on the item side com-
pared with the BPRMF base model. WRMF-MultiFR reduces the Gini index and Popularity rate
by 13.04% and 13.34%, respectively. And NGCF-MultiFR model improves the system’s diversity
from 0.1023 to 0.3042, which is a rather great enhancement. The biggest improvement of the di-
versity metric is on the FM-reduced dataset, where the diversity measure is improved from 0.0211
to 0.1674 by BPRMF-MultiFR compared with the corresponding base model. WRMF-MultiFR and
NGCF-MultiFR also largely enhance the diversity by a large margin. Furthermore, compared with
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Table 6. Summary of the Performance on MovieLens100K

Model Recall@K ↑ NDCG@K ↑ Disparityu ↓ Disparityi ↓ Gini ↓ Popularity
rate

↓ Diversity ↑

K = 10

BPRMF 0.2152 0.2637 1.3580 1.2131 0.6919 0.8996 0.1838
BPRMF-FOEIR 0.1968 0.2473 1.2103 1.0023 0.6558 0.8351 0.2817
BPRMF-FairRec 0.2049 0.2495 1.3627 0.9357 0.6325 0.8214 0.2916
BPRMF-TFROM 0.2037 0.2481 1.1703 0.9223 0.6138 0.8172 0.2968
BPRMF-MultiFR 0.2055 0.2516 0.9877 0.8235 0.6027 0.8032 0.3029

WRMF 0.2166 0.2748 1.3753 1.2215 0.7278 0.9256 0.1391
WRMF-FOEIR 0.2107 0.2694 1.2533 1.1185 0.7152 0.8574 0.2478
WRMF-FairRec 0.2140 0.2735 1.3624 0.9626 0.6954 0.8315 0.2621
WRMF-TFROM 0.2128 0.2707 1.2213 0.9266 0.6424 0.8106 0.2754
WRMF-MultiFR 0.2156 0.2733 0.9997 0.8672 0.6239 0.8021 0.3045

NGCF 0.2275 0.2855 1.4226 1.2333 0.7526 0.9621 0.1023
NGCF-FOEIR 0.2242 0.2705 1.2624 1.1388 0.7239 0.8627 0.2282
NGCF-FairRec 0.2252 0.2776 1.3526 1.0221 0.7027 0.8410 0.2518
NGCF-TFROM 0.2219 0.2756 1.2317 1.0005 0.6811 0.8313 0.2724
NGCF-MultiFR 0.2245 0.2752 1.0232 0.9862 0.6428 0.8213 0.3042

K = 20

BPRMF 0.3273 0.2848 2.8215 1.2237 0.6840 0.8630 0.2367
BPRMF-FOEIR 0.3107 0.2734 2.2250 1.0011 0.6540 0.7934 0.3381
BPRMF-FairRec 0.3204 0.2801 2.5129 1.0001 0.6459 0.7589 0.3426
BPRMF-TFROM 0.3134 0.2782 2.0781 0.9283 0.6271 0.7602 0.3397
BPRMF-MultiFR 0.3210 0.2833 1.9234 0.8826 0.6011 0.7552 0.3625

WRMF 0.3305 0.2964 3.0307 1.2382 0.7223 0.8953 0.1905
WRMF-FOEIR 0.3221 0.2896 2.5632 1.1296 0.6916 0.8051 0.3217
WRMF-FairRec 0.3227 0.2925 2.8691 1.0214 0.6729 0.7926 0.3281
WRMF-TFROM 0.3209 0.2912 2.4253 0.9721 0.6462 0.7891 0.3402
WRMF-MultiFR 0.3255 0.2921 2.0913 0.9023 0.6124 0.7889 0.3588

NGCF 0.3431 0.3022 3.2431 1.2347 0.7728 0.9233 0.1525
NGCF-FOEIR 0.3259 0.2953 2.6877 1.1465 0.6966 0.8234 0.3029
NGCF-FairRec 0.3327 0.2996 2.9162 1.1056 0.6735 0.8134 0.3194
NGCF-TFROM 0.3317 0.2989 2.4726 1.0314 0.6534 0.8108 0.3356
NGCF-MultiFR 0.3286 0.3000 2.2421 0.9928 0.6421 0.8001 0.3429

We evaluate for recommendation accuracy (Recall and NDCG) and fairness (Disparityu , Disparityi , Gini, Popularity

rate, and Diversity), where K is the length of the recommendation list. A metric followed by “↑” means “the larger, the

better”, while a metric followed by “↓” means “the smaller, the better”. The fairness constraints are specified using the

“gender” on the consumer side and the “genre” on the producer side. In each block, the paired t-test between the

second best method and the best method on each metric is significant at p ≤ 0.01.

other state-of-the-art fair ranking methods, Multi-FR can still consistently achieve better fairness
measures on both sides.
We also observe a conflict between the recommendation accuracy and fairness. For instance,

NGCF achieves the highest accuracy regarding Recall and NDCG on three datasets; however,
its recommendation is the least fair and diverse compared to other models. FOEIR, FairRec, and
TFROM achieve better fairness by re-ranking the recommendation list based on the relevance
scores obtained from the base models; however, the original ranking order is disrupted, leading to
the accuracy drop. Different from prior post-processing methods that require to obtain the rele-
vance scores between users and items beforehand, our Multi-FR is an in-processing method that
ensures both the recommendation accuracy and multi-stakeholder fairness in an end-to-end way.
Based on the experimental results, Multi-FR can balance the recommendation accuracy and fair-
ness well by largely improving the fairness and diversity with little drop in the accuracy. For
instance, concerning Recall@20, NGCF-MultiFR only has a drop of 4.23%, 1.71%, and 2.23% on
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Table 7. Summary of the Performance on MovieLens1M

Model Recall@K ↑ NDCG@K ↑ Disparityu ↓ Disparityi ↓ Gini ↓ Popularity
rate

↓ Diversity ↑

K=10

BPRMF 0.1462 0.2360 1.5225 1.2648 0.7586 0.9326 0.1264
BPRMF-FOEIR 0.1425 0.2318 1.4263 1.2624 0.7171 0.8530 0.2545
BPRMF-FairRec 0.1453 0.2344 1.4927 1.0826 0.6927 0.8531 0.2637
BPRMF-TFROM 0.1437 0.2332 1.3782 0.9263 0.6918 0.8346 0.2812
BPRMF-MultiFR 0.1458 0.2333 1.0235 0.8716 0.6825 0.8214 0.3023

WRMF 0.1681 0.2850 2.1773 1.3125 0.7720 0.9921 0.0157
WRMF-FOEIR 0.1646 0.2809 2.1750 1.3128 0.7710 0.9244 0.0873
WRMF-FairRec 0.1661 0.2846 2.1023 1.1352 0.7241 0.9027 0.1015
WRMF-TFROM 0.1654 0.2829 1.9273 1.1044 0.7172 0.8823 0.1025
WRMF-MultiFR 0.1644 0.2811 1.6523 0.9726 0.7032 0.8527 0.1029

NGCF 0.1782 0.2852 2.5632 1.3527 0.8010 0.9935 0.0032
NGCF-FOEIR 0.1762 0.2834 2.3345 1.3189 0.7786 0.9305 0.0127
NGCF-FairRec 0.1774 0.2848 2.5413 1.2635 0.7309 0.9135 0.1000
NGCF-TFROM 0.1767 0.2833 2.1311 1.1472 0.7222 0.8873 0.1124
NGCF-MultiFR 0.1724 0.2829 1.8528 1.1125 0.7152 0.8734 0.1320

K=20

BPRMF 0.2287 0.2438 3.2123 1.2638 0.7512 0.9047 0.1743
BPRMF-FOEIR 0.2220 0.2384 2.8707 1.2660 0.7034 0.8075 0.3183
BPRMF-FairRec 0.2280 0.2425 2.9012 1.1109 0.6931 0.8123 0.3237
BPRMF-TFROM 0.2272 0.2419 2.7100 1.0019 0.6846 0.8087 0.3308
BPRMF-MultiFR 0.2252 0.2424 2.5972 0.8241 0.6728 0.8027 0.3426

WRMF 0.2525 0.2859 3.9079 1.3105 0.7579 0.9808 0.0377
WRMF-FOEIR 0.2469 0.2804 3.8470 1.3105 0.7534 0.8967 0.1854
WRMF-FairRec 0.2502 0.2851 3.8721 1.2358 0.7129 0.8749 0.2203
WRMF-TFROM 0.2482 0.2839 3.7247 1.1392 0.7072 0.8562 0.2210
WRMF-MultiFR 0.2470 0.2832 2.9341 1.0826 0.6923 0.8231 0.2239

NGCF 0.2633 0.2936 4.1124 1.3469 0.7992 0.9922 0.0123
NGCF-FOEIR 0.2574 0.2890 3.8728 1.3098 0.7842 0.9231 0.1026
NGCF-FairRec 0.2591 0.2856 3.8927 1.2533 0.7542 0.8862 0.1224
NGCF-TFROM 0.2580 0.2819 3.5820 1.1301 0.7278 0.8635 0.1374
NGCF-MultiFR 0.2588 0.2844 3.0375 1.1057 0.6955 0.8562 0.1524

We evaluate for recommendation accuracy (Recall and NDCG) and fairness (Disparityu , Disparityi , Gini, Popularity

rate, and Diversity), where K is the length of the recommendation list. A metric followed by “↑” means “the larger, the

better”, while a metric followed by “↓” means “the smaller, the better”. The fairness constraints are specified using the

“gender” on the consumer side and the “genre” on the producer side. In each block, the paired t-test between the

second best method and the best method on each metric is significant at p ≤ 0.01.

three datasets, respectively, compared to the original NGCF model. Considering the large magni-
tude of fairness and diversity improvements, we denote this accuracy drop is relatively small.
In order to show the capability of our proposed method for balancing the recommendation

accuracy and fairness more clearly, we display the radar plots in Figure 1, where each sub-plot
compares the FOEIR, FairRec, TFROM, and Multi-FR on a specific backbone. For Recall, NDCG,
and Diversity, we divide the value achieved by each method by the highest value to indicate how
much percentage different methods can reach compared to the best one given the same backbone
and dataset. For other metrics which are the smaller the better, we first compute a reciprocal of
those values, indicating the fairness on different perspectives, i.e., Consumer (C), Producer (P), Gini,
Popularity (Pop). Then we adopt a similar way to divide the value achieved by each method by the
highest value obtained across all approaches to determine the relative scale that each method may
attain in comparison to the best. As illustrated in Figure 1, the Multi-FR method outperforms all
other approaches on all fairness metrics and produces nearly identical recommendation accuracy,
regardless of the backbone and dataset chosen.
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Table 8. Summary of the Performance on FM-reduced

Model Recall@K ↑ NDCG@K ↑ Disparityu ↓ Disparityi ↓ Gini ↓ Popularity
rate

↓ Diversity ↑

K = 10

BPRMF 0.1248 0.1671 1.3277 1.3099 0.8136 0.9893 0.0211
BPRMF-FOEIR 0.1245 0.1669 1.2746 1.2801 0.8064 0.9733 0.0732
BPRMF-FairRec 0.1240 0.1659 1.3320 1.1511 0.7826 0.9625 0.1027
BPRMF-TFROM 0.1227 0.1632 1.1371 1.1023 0.7644 0.9285 0.1266
BPRMF-MultiFR 0.1209 0.1592 1.0288 0.9323 0.7514 0.9023 0.1674

WRMF 0.1326 0.1828 1.6231 1.5135 0.8523 0.9905 0.0104
WRMF-FOEIR 0.1323 0.1825 1.5268 1.3687 0.8271 0.9625 0.1162
WRMF-FairRec 0.1322 0.1820 1.5826 1.2231 0.8038 0.9699 0.1008
WRMF-TFROM 0.1320 0.1817 1.3917 1.1343 0.7996 0.9555 0.1229
WRMF-MultiFR 0.1301 0.1784 1.1273 1.0824 0.7823 0.9275 0.1462

NGCF 0.1452 0.1923 1.8231 1.8326 0.9006 0.9932 0.0096
NGCF-FOEIR 0.1428 0.1899 1.6092 1.5247 0.8725 0.9755 0.0976
NGCF-FairRec 0.1435 0.1901 1.6235 1.3825 0.8522 0.9826 0.0927
NGCF-TFROM 0.1430 0.1892 1.4326 1.3728 0.8364 0.9678 0.1072
NGCF-MultiFR 0.1426 0.1888 1.2526 1.1081 0.8002 0.9388 0.1388

K = 20

BPRMF 0.1904 0.1892 1.3658 1.3103 0.8161 0.9792 0.0407
BPRMF-FOEIR 0.1899 0.1888 1.2541 1.3746 0.8006 0.9033 0.1752
BPRMF-FairRec 0.1902 0.1872 1.3435 1.1627 0.7519 0.8892 0.2016
BPRMF-TFROM 0.1871 0.1836 1.2762 1.1517 0.7498 0.8554 0.2263
BPRMF-MultiFR 0.1853 0.1726 0.9999 0.9083 0.7426 0.8388 0.2515

WRMF 0.2104 0.2031 1.6127 1.6852 0.8627 0.9889 0.0214
WRMF-FOEIR 0.2096 0.2008 1.5179 1.4920 0.8489 0.9258 0.1237
WRMF-FairRec 0.2100 0.1984 1.5726 1.2338 0.8023 0.9022 0.1539
WRMF-TFROM 0.2087 0.1976 1.3744 1.2076 0.7926 0.8825 0.1627
WRMF-MultiFR 0.2062 0.1954 1.0862 1.0927 0.7782 0.8526 0.2073

NGCF 0.2247 0.2258 1.7923 1.9349 0.9138 0.9905 0.0102
NGCF-FOEIR 0.2229 0.2206 1.6138 1.5562 0.8623 0.9429 0.1058
NGCF-FairRec 0.2236 0.2197 1.6282 1.3791 0.8425 0.9273 0.1286
NGCF-TFROM 0.2225 0.2188 1.4131 1.2231 0.8123 0.9076 0.1486
NGCF-MultiFR 0.2197 0.2164 1.2830 1.1001 0.7849 0.8862 0.1848

We evaluate for recommendation accuracy (Recall and NDCG) and fairness (Disparityu , Disparityi , Gini, Popularity

rate, and Diversity), where K is the length of the recommendation list. A metric followed by “↑” means “the larger, the

better”, while a metric followed by “↓” means “the smaller, the better”. The fairness constraints are specified using the

“age” on the consumer side and the “popularity” on the producer side. In each block, the paired t-test between the

second best method and the best method on each metric is significant at p ≤ 0.01.

6.5.2 Comparison with Grid-Search Strategy. In order to demonstrate the effectiveness of the
MOO mechanism in the Multi-FR, we conduct experiments to compare our model with the grid-
search strategy, where scaling factors on the BPRMF objective and the fairness objective are man-
ually set (the summation is 1). We only consider two-loss objectives for a convenient grid-search,
which means we only add the fairness constraint on one side each time training with the BPR rank-
ing loss (i.e., L = αA · LAccuracy + (1−αA) · LC−Fair

1 or L = αA · LAccuracy + (1−αA) · LP−Fair
1 ).

The scatter plots are shown in Figure 2. Each blue point indicates a grid-search solution averaged
by five rounds where the value on the point is the weight αA on the BPR loss. Each red point refers
to one final Multi-FR solution selected through the strategy described in Section 5.5 after running
the model for five rounds. It is worthy to notice that all red points are Pareto optimal, which is
theoretically guaranteed as demonstrated in Section 5. Thus, any red point cannot dominate other
red points with respect to both the recommendation accuracy and the fairness. Here, the curve of
the red points can be regarded as the Pareto frontier.
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Fig. 1. Relative performance achievement compared to the best on each metric given the same backbone

and dataset. All the metrics are computed at position 20 (i.e., Metric@20). For Recall, NDCG, and Diversity

(the larger, the better), we divide the value achieved by each method by the best one to indicate the relative

performance on the recommendation accuracy of each method compared to the best one. For other metrics

(the smaller, the better), we first compute the reciprocal of each value to indicate the fairness from different

perspectives, followed by adopting the same operationwe conducted before. Thus, the greater the percentage

value in these plots, the better the approach on that measurement.
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Fig. 2. The comparison between the MOO mechanism in our strategy versus the grid-search strategy on all

datasets with the BPRMF backbone.

From the illustration in Figure 2, we can observe that the MOO successfully balances the trade-
off between the fairness and recommendation accuracy. The clear margin distance between the
curve formed by the red points (Pareto frontier) and the curve formed by the blue points show the
effectiveness of the MOO mechanism in our proposed Multi-FR.

6.5.3 Training with Different Number of Constraints. We investigate the empirical training effi-
ciency by using a different number of fairness constraints in our model. We choose BPRMF as our
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Table 9. The Training Efficiency Comparison of Different Number of Fairness Constraints

by Using Our Model,Multi-FR

Objective ML100K ML1M FM-reduced

(1) αA · LAccuracy + αC1 · LC−Fair
1 676.4 11,059.2 69,438.3

(2) αA · LAccuracy + αP
1 · LP−Fair

1 363.8 8,945.1 54,281.8
(3) αA · LAccuracy +

∑2
i=1 α

C
i · LC−Fair

i 749.3 15,044.0 98,177.2
(4) αA · LAccuracy +

∑2
i=1 α

P
i · LP−Fair

i 512.5 12,684.2 90,864.5
(5) αA · LAccuracy + αC1 · LC−Fair

1 + αP
1 · LP−Fair

1 912.7 19,560.7 102,232.1
(6) αA · LAccuracy +

∑2
i=1 α

C
i · LC−Fair

i + αP
1 · LP−Fair

1 1,119.2 23,653.5 123,171.7
(7) αA · LAccuracy + αC1 · LC−Fair

1 +
∑2

i=1 α
P
i · LP−Fair

i 1,013.8 23,189.3 120,816.9
(8) αA · LAccuracy +

∑2
i=1 α

C
i · LC−Fair

i +
∑2

i=1 α
P
i · LP−Fair

i 1,213.5 25,793.9 165,287.6

The training time is reported in seconds. The backbone is chosen as the BPRMF.

base model to report the training efficiency. Each row in Table 9 indicates training with a different
number of disparity objectives on the consumer side and the producer side. Here the first and sec-
ond fairness constraints on the consumer side represent the gender-based fairness and age-based
fairness, respectively. The first and second fairness constraints on the producer side represent the
popularity-based fairness and genre-based fairness, respectively. We observe that our proposed ap-
proach has reasonable training time, especially when the number of fairness constraints increases:
the more number of constraints added, the less extra time the model needs. This shows the ability
of ourmodel to trainmultiple objectives simultaneously formultiple stakeholders in the real-world
application.

7 CONCLUSION AND DISCUSSION

In this article, we propose a multi-objective optimization framework, Multi-FR, for the fairness-
aware recommendation in multi-sided marketplaces, where the final solution is guaranteed to be
Pareto optimal. To achieve fairness-aware recommendation, four fairness constraints are proposed
within the multi-objective optimization framework. We employ the smooth rank and stochastic
ranking policy to make our fairness metrics differentiable, thus the fairness criteria can be op-
timized directly in an end-to-end way. Then, Multi-FR applies the multi-gradient descent algo-
rithm to generate a Pareto set, where the scaling factors on each objectives are adaptively learned
through the Frank-Wolfe Solver without handcraft tuning. Finally, the Least Misery Strategy is
adopted to select the most proper solution from the generated Pareto set. Experimental results on
three real-world datasets show that our method can constantly outperform various correspond-
ing base architectures and state-of-the-art fairness recommendation/ranking methods. Extensive
experiments on multiple evaluation metrics clearly validate thatMulti-FR can largely improve the
recommendation fairness with only little drop in terms of the recommendation quality. Further
analysis demonstrates the effectiveness of the MOO mechanism and the capability of Multi-FR
optimizing any number of fairness criteria for multiple stakeholders concurrently.
There exist several extensions we intend to investigate as future work. First, we intend to collect

the producer information for the datasets, such as film producers of movies, so that we can directly
define and optimize producer-sided fairness, rather than making items act as a proxy of producers.
Second, our current definition of fairness only considers one demographic attribute at a time on
the consumer side or the producer side. We intend to investigate how to ensure fairness for those
people belonging to multiple demographic groups (e.g., “Black Women”). Therefore, we need to
consider how to model the fairness for multiple attributes (“color” and “gender” in this example)
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concurrently on one side. Third, the Gumbel noise used to solve the non-differential problemwhen
modeling the exposure fairness for producers is often independently and identically sampled. This
is a common practice in community. However, we would like to study whether the model uncer-
tainty can be integrated into this sampling procedure so that the final ranking positions based on
the stochastic ranking policy can be estimated with a higher quality.
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