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ABSTRACT
Neural networks, particularly Transformer-based architectures,
have achieved significant performance improvements on several
retrieval benchmarks. When the items being retrieved are docu-
ments, the time and memory cost of employing Transformers over
a full sequence of document terms can be prohibitive. A popular
strategy involves considering only the first n terms of the document.
This can, however, result in a biased system that under retrieves
longer documents. In this work, we propose a local self-attention
which considers a moving window over the document terms and
for each term attends only to other terms in the same window. This
local attention incurs a fraction of the compute and memory cost of
attention over the whole document. The windowed approach also
leads to more compact packing of padded documents in minibatches
resulting in additional savings. We also employ a learned saturation
function and a two-staged pooling strategy to identify relevant
regions of the document. The Transformer-Kernel pooling model
with these changes can efficiently elicit relevance information from
documents with thousands of tokens. We benchmark our proposed
modifications on the document ranking task from the TREC 2019
Deep Learning track and observe significant improvements in re-
trieval quality as well as increased retrieval of longer documents at
moderate increase in compute and memory costs.
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1 INTRODUCTION
Deep neural networks have yielded dramatic improvements in
several information retrieval (IR) tasks [9, 17]. Some of the improve-
ments can be attributed to Transformer-based architectures [22],
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Figure 1: The probability of relevance and the probability of
retrieval within top 30 ranks (using the baseline TK and our
proposed TKL model) on the document retrieval task from
TREC 2019 Deep Learning track. Longer documents have a
disproportionately smaller probability of being retrieved by
TK compared to TKL.

such as in BERT-based rankingmodels [18, 24] and the Transformer-
Kernel pooling (TK) model [11]. These Transformer-based architec-
tures employ self-attention to learn contextual embeddings of text
for matching. Unfortunately, the time and memory complexity of
applying self-attention over a sequence of length L is O(L2) [15].
When the goal is to retrieve documents, the cost of applying atten-
tion over whole documents can be prohibitive.

A popular strategy involves considering only the first n terms
of a document. However, this ignores any matches between the
query and the remainder of the document which can result in poor
retrieval quality, in particular for longer documents. Fig. 1 illustrates
the increasing gap between the probability of relevance P(rel |li =
lendoc ) and the probability of retrieval P(ret |li = lendoc ) by the TK
model as document length increases. A reasonable explanation may
be that TK under retrieves longer documents because it inspects
only the first 200 terms of any document.

In this work, we propose a local self-attention which considers
fixed-size moving windows over the document terms. For each
term, we only attend to the terms in the same window. In case
of non-overlapping windows, this reduces the time and memory
complexity of self-attention over a sequence of length L toO(L × l),
where l is the window size. For l ≪ L, this is a significant reduction
in compute and memory requirements. In this work, we consider
partially overlapping windows, with a slightly higher computation
cost.

Another important challenge is to effectively aggregate the ev-
idence from different parts of the document. Towards that goal
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we propose a novel two-staged aggregation strategy: (i) A local
aggregation, with a learned saturation function, within fixed-size
windows, followed by (ii) a global selection of top-t distinctly impor-
tant regions of the document and corresponding signal aggregation.

We incorporate our proposed changes into a TK pooling model
for long text (TKL), and answer the following research questions:

R1 How does TKL compare to TK and other state-of-the-art re-
trieval methods?

R2 Does retrieval quality improve when TKL considers longer
portions of documents?

R3 Is TKL more likely to retrieve longer documents than TK?
R4 What is the effect of learned saturation on retrieval quality?
R5 How often does TKL use different parts of the document?

All code used in this study is available at: https://github.com/
sebastian-hofstaetter/transformer-kernel-ranking.

2 RELATEDWORK
Neural models for document retrieval. Neural models have shown

successful results in a number of IR tasks [9, 10, 17]. Xiong et al.
[23] proposed a kernel pooling approach (KNRM) based on a bag-of-
words representation of words. This was further extended by Dai
et al. [5] to incorporate n-gram representations using convolutional
architecture. Several others [8, 14] have highlighted important con-
siderations for designing neural ranking models for documents
that are distinct from dealing with passages and other short text.
Zamani et al. [26] have emphasized on efficiency in neural ranking
models and introduced neural models for retrieving documents
from a large corpus. More recently, Transformer [7] based archi-
tectures have been employed to learn contextual representations
which have led to bigger improvements [11, 18, 19, 24]. Yan et al.
[24] apply passage-level BERT-based relevance estimators to rank
documents. MacAvaney et al. [16] use pretrained contextual em-
beddings, without fine-tuning, in downstream ranking models.

Classically, assessing relevance of documents based on relevant
parts has been studied in many forms [3, 21] and this study contin-
ues that exploration in the context of neural models. Unlike [16, 24],
our proposed model is trained in a fully-supervised setting and only
requires query-document relevance labels for training.

Efficient Transformers. Al-Rfou et al. [1] train a Transformer on
the language modeling task by splitting long text into multiple seg-
ments. Dai et al. [6] extend that idea by incorporating a recurrence
mechanism over the segments. More recently, Kitaev et al. [15] have
proposed several techniques, including locality-sensitive hashing
for self–attention, to scale the Transformer to longer text. These
techniques are orthogonal to the ideas presented in this paper and
can be combined for additional efficiency gains.

3 TKL MODEL
The TKL model adapts TK [11] in two main aspects to enable docu-
ment ranking: efficient attention & scoring relevant regions.

We start by contextualizing query embeddings (q1:n ) in one
window and document embeddings (d1:m ) in multiple windows of
size w and overlap them by o. Each window is contextualized by
a multi-layered Transformer (TF) with highway connection and

concatenated again, by removing overlapping vectors:
q̂1:n = TF(q1:n )

d̂1:m = [TF(d1:w+o )1:o ; TF(dw−o:2w+o )o:−o ; ...]
(1)

During batched processing of variable length padded documents,
the independence of each window allows us to easily and efficiently
skip segments that contain only padding, and pack the remaining
windows to avoid unnecessary computations.

TKL transforms every individual term interaction with kernel-
activations [23], which splits similarities into activations based on
the closeness to a certain range. Each kernel focuses on a fixed
similarity range with center µk and width of σ . Each kernel results
in a matrix K ∈ R |q |× |d | :

Kk
i , j = exp

©«−
(
cos(q̂i , d̂j ) − µk

)2
2σ 2

ª®®¬ (2)

Now, TKL creates a relevance topography of a document, by
sliding a saturation window across the interactions. This requires
multiple steps. We start the process by computing the sum of docu-
ment term interactions along dimension j inside the sliding window
region r for each query term and kernel:

Kr ,k
i =

j+rsize∑
j=1

Kk
i , j (3)

Instead of a fixed log saturation (as used by previous kernel-
pooling models [5, 11, 23]) we learn the shape of our non-linear
saturation function:�

Kr ,k
i = ai ∗

(
Kk
i

)1/bi
− ci (4)

where ai ,bi ,ci are conditioned on a query term salience embedding
ei and the region token count clen (to not disadvantage regions
containing padding):

ai = [ReLU (ei ); clen ] ∗Wa + ba

bi = [ReLU (ei ); clen ] ∗Wb + bb

ci = [ReLU (ei ); clen ] ∗Wc + bc

(5)

We initialize b∗ with 100, so that the training starts with a log-
approximation and ei with the Inverse Document Frequency of the
collection per term. After the saturation, we sum query dimensions,
and weight kernel bins, to receive a relevance topography over the
document:

sr =

( |q |∑
i=1

�
Kr ,k
i

)
Wk (6)

Finally, top-local-max takes the top-t local maxima and their f
immediate neighbors, by selecting the 1 to f left and right values
of the maxima. By thatWs may learn a combination between the
peak and the slope of the topography of the most relevant regions:

s = top-local-maxt ,f

(
sr
)
Ws (7)

We define local as the saturation region size r , so that we do not
count term matches twice. The position of the regions can easily
be extracted with the final output score, enabling the user interface
to highlight these regions. Furthermore, it allows us to analyze the
TKL model as we do in Section 5.
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Table 1: Effectiveness and efficiency results for both query sets. For the stat. significance a − f includes abcde f .

Sig. Model Max Doc. TREC DL Track 2019 TREC 2019 Dev - Sparse Labels Average
Length nDCG@10 MRR@10 MAP@100 nDCG@10 MRR@10 MAP@100 Docs./ms

Baselines
a BM25 - 0.488 0.815 0.234 0.311 0.252 e0.265 -
b MatchPyramid [20] 200 e0.567 e0.903 e0.232 ae0.344 ae0.286 e0.288 27
c PACRR [12] 200 ae0.606 0.860 e0.228 ae0.344 ae0.283 e0.286 22
d CO-PACRR [13] 200 e0.550 e0.895 e0.231 ae0.345 ae0.284 e0.288 14
e KNRM [23] 200 0.496 0.771 0.214 a0.323 a0.261 0.264 49
f CONV-KNRM [5] 200 e0.565 e0.903 e0.241 ae0.345 ae0.283 e0.287 10
д BERT[CLS] [18] 200 a−f 0.642 ace0.944 e0.257 a−f hi j0.417 a−f hi j0.352 a−f hi j0.358 0.1
h TK [11] 200 e0.594 e0.903 cde0.252 a−f 0.375 a−f 0.312 a−f 0.318 4

Best single BERT-based official TREC 2019 runs
- ucas_runid1 n/a 0.644 0.911 0.264 - - - <0.1
- bm25_marcomb [25] n/a 0.640 0.913 0.323 - - - <0.1

Our proposed models
i TKL 2,000 a−f h0.634 e0.915 cdef 0.264 a−f hj0.403 a−f hj0.338 a−f h0.345 1.1
j TKL 4,000 abdef 0.644 ace0.957 cdei0.277 a−f h0.396 a−f h0.329 a−f h0.336 0.9

4 EXPERIMENT DESIGN
We utilize the recent TREC Deep Learning track dataset [4] for
document retrieval, derived from MS MARCO [2]. It contains 3.21
million documents. The median word count is 804, with the 90th
percentile including 3267 words. For evaluation we use two differ-
ently created test sets: Dev sparse judgements on 5193 queries (only
1 relevant-judged document per query) and high-qualitative dense
judgements (deep pooling) from the 2019 Deep Learning track on
43 queries (on average 378 relevant documents per query).

To have a fair comparison, we utilize the provided initial ranking
of top 100 documents returned by BM25 for all models, except
for the bm24marcob baseline runs that uses a stronger first stage
retrieval. We conduct statistical significance tests with a Wilcoxon
signed-rank test with p < 0.05.

For the parameter settings of the baselines, we followed the
settings from Hofstätter et al. [11]. All models except BERT use 300
dimensional GloVe embeddings. TK and TKL use 2 Transformer
layers with 10 attention heads. TKL uses a chunk width w of 40,
overlapping o of 10, region size r of 30, and weights the top 3 local-
maxima with 2 neighboring near-maxima to form the final score.
For kernel-activation we use the default of 11 kernels from −1 to +1
and standard deviation of 0.1. We train with a batch size of 32 and
the Adam optimizer with a learning rate of 10−4 for representation
learning, 10−3 for other network components. Our early stopping
is based on the best nDCG@10 validation value. Our efficiency
measurements are based on NVIDIA GTX 1080 GPUs.

5 RESULTS
R1. How does TKL compare to TK and other SOTA retrieval methods?

Table 1 compares TKL to several baselines – incl. TK and other
SOTA neural models on the TREC Deep Learning document rank-
ing task. Our main result in this paper is that the proposed TKL
model achieves significant improvements over the TK baseline. TKL
achieves comparable performance to BERT models in case of com-
plete judgements, which are more reliable than the sparse labels of
the Dev set.

The TKL model operating on 10 to 20 times more tokens, is more
effective than the BERT model only considering 200 tokens. Note
that the high GPU memory requirements of BERT does allow us to
extend to many more terms.

Table 1 also contains the results of two successful runs from
the TREC DL Track 2019, i.e., ucas_runid1 and bm25_marcob.1
Both of these models used BERT for document retrieval. In other
words, they chunk the documents and produce scores per passages
and combine the scores for document retrieval. Their results are
also comparable to those obtained by the TKL model, in terms of
nDCG@10. TheMRR obtained by TKL is higher than those obtained
by these two models. The bm25_marcob model achieves higher
MAP, however this is due to the stronger first stage retrieval used by
this model. In other words, all the models except for bm25_marcob
re-rank the top 100 documents provided by the track organizers,
while bm25_marcob uses a full ranking strategy by using a stronger
first stage retrieval model.
R2. Does retrieval quality improve when TKL considers longer por-
tions of documents?

Fig. 2 shows the nDCG@10 results of our models trained and
evaluated on different maximum document lengths. We observe
the strength of the TKL model: The longer the input document, the
better the results. The document-wide kernel-pooling saturation
used by CONV-KNRM does not clearly benefit from longer text.
R3. Is TKL more likely to retrieve longer documents than TK?

Figure 1 shows that TKL is more likely than TK to retrieve long
relevant documents. While for short documents, there is no differ-
ence between TK and TKL, the improvement of TKL is distinct for
longer documents, as its probability to retrieve longer documents
is closer to the probability of retrieving relevant documents.
R4. What is the effect of learned saturation on retrieval quality?

Table 2 shows an ablation study of different saturation functions
(as defined in Eq. (4)). It is clear, that the saturation requires a non-
linear shape, as the linear version (with b = 1) suffers strongly in
1Note that we do not consider ensemble models for fair comparison.
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Figure 2: TREC-2019 results based on the document length.

Table 2: Ablation study of different saturation functions us-
ing 2,000 words per document.

Sig. TKL TREC DL 2019 TREC DL Dev-Sparse
Saturation nDCG@10 MAP nDCG@10 MAP

a Linear 0.570 0.237 0.366 0.308
b Log a0.618 a0.266 a0.400 a0.341
c Embedding 0.634 a0.264 ab0.403 ab0.345

comparison to the others. Furthermore, our novel query salience
conditioned function outperforms the fixed log function used in
previous kernel-pooling approaches, except for MAP on the TREC
DL 2019 dataset.
R5. How often does TKL attend to different parts of the document?

We show the distribution of the top-3 relevant regions in Figure 3.
While we can clearly see a focus on the beginning of the document,
we observe a sizeable amount of relevant regions after 500 words.
The most relevant region occur 24.5 %, the second 41.5 %, and the
third 46.4 % of the time after the 500th word. Even though our
baselines achieve acceptable results by only looking at the start of
a document, this result in Figure 3 shows that TKL learns to detect
relevant regions in every part of a document.

6 CONCLUSION
In this work we proposed a solution to apply Transformers to full
document re-ranking. Our TKL model efficiently contextualizes
overlapping windows, which allows us to pack padded documents
easily. Furthermore, we proposed a novel saturation function, condi-
tioned on query term salience, to slide over a document and detect
the top distinct relevant regions in the document. Our experiments
on the TREC Deep Learning datasets showed that TKL takes advan-
tage of the increased input. We observed improving performance
as more input tokens are fed to the model. Therefore, TKL provides
effective performance with high efficiency while using thousands
of terms from the documents.
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