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ABSTRACT
Unlike traditional learning to rank models that depend on hand-
crafted features, neural representation learning models learn higher
level features for the ranking task by training on large datasets.
Their ability to learn new features directly from the data, however,
may come at a price. Without any special supervision, these models
learn relationships that may hold only in the domain from which
the training data is sampled, and generalize poorly to domains not
observed during training. We study the effectiveness of adversarial
learning as a cross domain regularizer in the context of the ranking
task. We use an adversarial discriminator and train our neural rank-
ing model on a small set of domains. The discriminator provides a
negative feedback signal to discourage the model from learning do-
main specific representations. Our experiments show consistently
better performance on held out domains in the presence of the
adversarial discriminator—sometimes up to 30% on precision@1.
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1 INTRODUCTION
Several neural ranking models have been proposed recently that
estimate the relevance of a document to a query by considering the
raw query-document text [14] or based on the patterns of exact
query term matches in the document [5], or a combination of both
[10]. These models typically learn to distinguish between the input
feature distributions corresponding to a relevant and a less relevant
query-document pair by observing a large number of relevant and
non-relevant samples during training. Unlike traditional learning
to rank (LTR) models that depend on hand-crafted features [8],
these deep neural models learn higher level representations useful
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for the target task directly from the data. Their ability to learn
features from the training data is a powerful attribute that enables
them to potentially discover new relationships not captured by
hand-crafted features. However, as Mitra and Craswell [9] discuss,
the ability to learn new features may come at the cost of poor
generalization and performance on domains not observed during
training. The model, for example, may observe that certain pairs
of phrases—e.g., “Theresa May” and “Prime Minister”—co-occur
together more often than others in the training corpus. Or, the
model may conclude that it is more important to learn a good
representation for “Theresa May” than for “John Major” based on
their relative frequency of occurrences in training queries. While
these correlations and distributions are important if our goal is to
achieve the best performance on a single domain, the model must
learn to be more robust to them if we instead care about “out of
box” performance on unseen domains, e.g., older TREC collections
[19]. In contrast, traditional retrieval models (e.g.BM25 [12]) and
LTR models based on aggregated count based features—that make
fewer distributional assumptions—typically exhibit more robust
cross domain performances.

Our goal is to train deep neural ranking models that learn useful
representations from the data without “overfitting” to the distribu-
tions of the training domains. Recently, adversarial learning has
been shown to be an effective cross domain regularizer suitable
for classification tasks [3, 17]. We adapt a similar strategy to force
neural ranking models to learn more domain invariant representa-
tions. We train our neural ranking model on a small set of domains
and evaluate its performance on held out domains. During training,
we combine our ranking model with an adversarial discriminator
that tries to predict the domain of the training sample based on
the representations learned by the ranking model. The gradients
from the adversarial components are reversed when backpropa-
gating through the layers of the ranking model. This provides a
negative feedback signal to the ranking model to discourage it from
learning representations that may be significant only for specific do-
mains. Our experiments show consistent improvements in ranking
performance on held out domains from the proposed adversarial
training—sometimes up to 30% improvement on precision@1.

2 RELATEDWORK
Adversarial networks surfaced shortly after they were introduced
in the generative adversarial network (GAN) model. Goodfellow et
al. [4] present a generative model that learns a distribution pG (x)
that matches a true distribution pdata (x). The generative model
receives training updates through a joint loss function shared with
an adversarial network, the discriminator, that learns whether a
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Figure 1: Cross domain regularization of the two baselinemodels—CosSim and Duet-distributed—using an adversarial discrim-
inator. The discriminator inspects the learned representations of the ranking model and provides a negative feedback signal
for any representation that aids domain discrimination.

sample is from pG (x) or pdata (x) as a binary classification problem.
The generator is penalized when the discriminator can successfully
classify the sample origin, framing the relationship as a minimax
game. While initially proposed for generating continuous data,
Donahue et al. [2] extend this work by learning an encoder that
maps the data to the latent space z. They show that this can learn
useful features for image classification tasks without the need for
supervised training.
Tzeng et al. [18] first propose a form of domain agnostic representa-
tion via domain confusion, where the maximum mean discrepancy
between the final layers of two identical networks over different
domains is directly minimized. With the introduction of adversarial
agents, Ganin et al. [3] approach the same task of domain agnostic
representation by using an adversarial discriminator. The represen-
tation of the main network is forced away from a domain specific
representation by reversing the gradient updates outside of the
adversarial discriminator.
As previous methods used shared weights for both domains, Rozant-
sev et al. [13] expand on this work showing that unpairing a portion
of the classification model, with only a small number of parameters
shared prior to input into the final layers, can lead to effective adap-
tation in supervised and unsupervised settings. Recently, Tzeng et
al. [17] have represented a number of past domain adaptation works
in a unified framework, referred to as Adversarial Discriminative
Domain Adaptation, that captures previous approaches as special
cases and encompasses a GAN loss into the training of the classifier
and adversarial discriminator. This methodology achieves robust
domain agnostic models over computer vision collections.

3 CROSS DOMAIN REGULARIZATION USING
ADVERSARIAL LEARNING

Themotivation of the adversarial discriminator is to force the neural
model to learn domain independent features that are useful to
estimate relevance. We propose using an adversarial agent to force
the features learned by the ranking model to be domain agnostic by
shifting the model parameters in the opposite direction to domain
specific spaces on themanifold. This cross domain regularization via
domain confusion [17] can be represented as a joint loss function:

L = Lrel(q,docr ,dnr ,θD ,θrel)

+ λ ·
(
Ladv(q,docr ,θD ) + Ladv(q,docnr ,θD )

) (1)

where Lrel is a relevance based loss function and Ladv is the
adversarial discriminator loss. q,docr , and docnr are the query, the
relevant document, and the non-relevant documents, respectively.
Finally, θrel and θD are the parameters for the relevance and the
adversarial models, respectively. λ determines how strongly the
domain confusion loss should impact the optimization process. We
treat it as a hyper-parameter in our training regime. The ranking
model is trained on a set of train domains Dtrain = {d1, . . . ,dk }
separate from the set of held out domains Dtest = {dk+1, . . . ,dn }
on which it is evaluated.

The discriminator is a classifier that inspects the outputs of the
hidden layers of the ranking model, and tries to predict the domain
dtrue ∈ Dtrain of the training sample. The discriminator is trained
using a standard cross-entropy loss.

Ladv(q,doc,θD ) = −log
(
p(dtrue |q,doc,θD )

)
(2)

p(dtrue |q,doc,θD ) =
exp(ztrue)∑

j ∈Dtrain exp(zj )
(3)

Gradient updates are performed via backpropagation through
all subsequent layers, including those belonging to the ranking
model. However, as proposed by Ganin et al. [3], we utilize a gra-
dient reversal layer. This layer transforms the standard gradient,
δLadv
δθ to its additive inverse, − δLadv

δθrel
. This results in θrel maximizing

the domain identification loss, while still allowing θD to learn to
discriminate domains. While not directly optimized, this can be
viewed as modifying (1) via a sign change for Ladv.

Passage Retrieval Models. We evaluate our adversarial learning
approach on the passage retrieval task. We employ the neural rank-
ing model proposed by Tan et al. [16]—referred to as CosSim in the
remaining sections—and the Duet model [10] as our baselines. Our
focus in this paper is on learning domain agnostic text representa-
tions. Therefore, similar to Zamani et al. [20] we only consider the
distributed sub-network of the Duet model.

The CosSim model is an LSTM-based interaction focused archi-
tecture. We train the CosSim model in the same manner as [16],
with amargin of 0.2 over a hinge loss function. The Duet-distributed
is trained by maximizing the log likelihood of the correct passage,
as originally proposed in [10]. Similar to [11], we adapt the hyper-
parameters of the Duet model for passage retrieval. The output of
the Hadamard product is significantly reduced by taking the max
pooled representation, the query length is expanded to 20 from 8
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CosSim Duet-Dist.
source → target Size Original Adv Original Adv

P@1 MRR P@1 MRR P@1 MRR P@1 MRR

All→All 142627 0.4229 0.6188 0.4213(-.3%) 0.6214(+.4%) 0.4514 0.6136 0.4286(-5%)† 0.6061(-1%)†

All*→Sports 139000 0.3282 0.5194 0.4041(+23%)† 0.5925(+12%)† 0.2570 0.4567 0.3282(+28%)† 0.5011(+10%)†
Sports→Sports 3627 0.2146 0.5482 - - 0.2415 0.3734 - -
All*→Home 133372 0.3460 0.5275 0.3645(+5%)† 0.5433(+3%)† 0.3314 0.5285 0.3639(+10%)† 0.5457(+3%)†
Home→Home 9255 0.3014 0.5490 - - 0.2477 0.4119 - -
All*→Politics 138739 0.3100 0.5101 0.3580(+16%)† 0.5507(+8%)† 0.3400 0.5291 0.3516(+3%)† 0.5342(+3%)†
Politics→Politics 3888 0.2219 0.5234 - - 0.2160 0.5388 - -
All*→Travel 140150 0.2360 0.4486 0.2789(+18%)† 0.4723(+5%)† 0.2158 0.4196 0.2842(+32%)† 0.4532(+8%)†
Travel→Travel 2477 0.2263 0.5181 - - 0.1895 0.3998 - -

Table 1: Performance across L4 topics, where metrics under each collections represents the performance of the model trained
on the opposing two collections. All* is the entire L4 collection with target topic removed. † represents significance against
non adversarial model (p < 0.05, Wilcoxon test)

tokens, and the max document length is reduced to 300 from the
original 1000 tokens.

As opposed to past uses of adversarial approaches [3, 6, 17], ranking
requires modeling an interaction between the query and the docu-
ment. As shown in Figure 1a, the adversarial discriminator in our
setting, therefore, inspects the joint query-document representation
learned by the neural ranking models. For deeper architectures,
such as the Duet-distributed, we allow the discriminator to inspect
additional layers within the ranking model, as shown in Figure 1b.

4 EXPERIMENTS
4.1 Data

L4. We use Yahoo’s Webscope L4 high quality "Manner" collec-
tion [15]. For evaluation and training, all answers that were not
the highest voted were removed from the collection to reduce label
noise during training and provide a better judgment of performance
during evaluation. Training, development, and test sets were cre-
ated from a 80-10-10 split. Telescoping is used to create answer
pools for evaluation from the top 10 BM25 retrieved answers as
in [1].

InsuranceQA In the InsuranceQA dataset, questions are created
from real user submissions and the high quality answers come from
insurance professionals. The dataset consists of 12,887 QA pairs for
training, 1,000 pairs for validation, and two tests sets containing
1,800 pairs. For testing, each of the 1,800 QA pairs is evaluated with
499 randomly sampled candidate answers.

WebAP As both L4 and InsuranceQA are based on isolated pas-
sage retrieval for a directed question, we include the WebAP collec-
tion from Keikha et al. [7] to examine how well a model trained on
isolated passages with specific questions can generalize to a more
general passage retrieval task. The format of this collection consists
of 82 TREC queries with a total of 8,027 answer passages in total.
As only relevant answer passages are annotated in this collection,
we create non-relevant documents by using a sliding window of
random size. Evaluation is done over a telescoped list of top 100
BM25 retrieved documents.

4.2 Training
We experimented with two different training settings—updating
the ranking model and the discriminator parameters alternately as
proposed by Goodfellow et al. [4], and simultaneously. We also tried
different values for λ. Based on our validation results, we choose to
train the CosSim model with alternate updates and λ = 1. For the
Duet-distributedmodel, we see best performancewith simultaneous
updates and λ = 0.25. All models were trained with PyTorch 1 and
we implement early stopping based on the validation set.

4.3 Evaluation
We evaluate our proposed adversarial approach to cross domain
regularization under two settings. Under the cross topic setup, we
consider the 25 topics in the L4 dataset. We evaluate separately on
four of these topics—Sports, Home, Politics, and Travel—each time
training the corresponding models on the remaining 24 topics. For
the cross collection setup, we consider all three collections intro-
duced in Section 4.1. Similar to the cross topic setting, we evaluate
our models on each collection individually while training on the
remaining two. However, due to more pronounced differences in
both size and distributions between these collections—as compared
to the differences between the L4 topics—our basic adversarial ap-
proach had limited success on the cross collection task. Thus, we
adopt two additional changes to our training regime: (i) we sample
the training data from the training collections equally to avoid over–
fitting to any single collection, and (ii) we feed training samples
from the evaluation collection to the adversarial discriminator. We
make sure that the training samples from the evaluation collection
have no overlap with the test samples. In addition, we clarify that
the ranking model receives no parameter updates from these train-
ing samples with respect to relevance judgments. These samples
are only used to train the discriminator model’s loss. This training
setup may be appropriate when we want to train on some collec-
tions and evaluate on a different collection, where we can leverage
the unlabeled documents from the target collection to at least guide
the training of the adversarial component.

1https://github.com/pytorch/pytorch
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CosSim Duet-Dist.
source → target Original Adv Original Adv

P@1 MRR P@1 MRR P@1 MRR P@1 MRR

(InsuranceQA, L4)→ WebAP 0.0901 0.2410 0.2500 0.3873 0.1250 0.4567 0.3286† 0.5011†

(InsuranceQA, WebAP)→ L4 0.1120 0.2957 0.2424† 0.4335† 0.0758 0.1939 0.3908† 0.5642†

(L4, WebAP)→ InsuranceQA 0.1406 0.4267 0.1582 0.4717† 0.0489 0.1473 0.1622† 0.3059†

Table 2: Performance across collections, wheremetrics under each collections represents the performance of themodel trained
on the opposing two collections. † represents significance against non adversarial model (p < 0.05, Wilcoxon test)

5 RESULTS AND DISCUSSION
Cross Topic. Table 1 show the poor performance of the CosSim

and Duet-distributed models on the four target topics when trained
on the remaining collection. Notably, training on the topic specific
data alone also performs poorly likely because of inadequate train-
ing data. However, in the presence of the adversarial discriminator
both the models show significant improvement in performance
on all held out topics. The improvements are somewhat bigger on
the Duet-distributed baseline. We posit this is because the Duet-
distributed model—with a deeper architecture—fits the training
domain better at the cost of further loss in performance on the held
out domains. Therefore, the adversarial learning has a stronger
regularization opportunity on the Duet-distributed model.

Cross Collection In similar vein as the cross topic evaluation,
the incorporation of the adversarial signal significantly increases
performance on the held out collections in Table 2. However, the
difference in both size and distributional properties between these
collections are far greater. Therefore, while the addition of the ad-
versarial discriminator results in significant improvements—the
absolute performance on the held out collections are still modest,
even with adversarial regularization. We interpret these results as
a reminder of the challenges in adapting these models to unseen
domains.

6 CONCLUSION AND FUTUREWORK
The proposed adversarial approach to cross domain regularization
shows significant performance improvements consistently under
two evaluation settings (cross topic and cross collection) and over
two different deep neural baselines. However, these improvements
should be grounded in the realization that a model trained on large
in-domain data is still likely to have a significant advantage over
these models. Machine learning approaches to ad-hoc retrieval may
need significantly more breakthroughs before achieving the level
of robustness as some of the traditional retrieval models.

7 ACKNOWLEDGEMENTS
This work was supported in part by the Center for Intelligent In-
formation Retrieval and in part by the Office of the Director of Na-
tional Intelligence (ODNI), Intelligence Advanced Research Projects
Activity (IARPA) via AFRL contract #FA8650-17-C-9116 under sub-
contract #94671240 from the University of Southern California. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of the
ODNI, IARPA, or the U.S. Government. The U.S. Government is

authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. Any
opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect those of the sponsor.

REFERENCES
[1] Daniel Cohen and W. Bruce Croft. [n. d.]. End to End Long Short Term Memory

Networks for Non-Factoid Question Answering. In ICTIR ’16.
[2] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. 2016. Adversarial Feature

Learning. CoRR abs/1605.09782 (2016).
[3] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo

Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 1 (2016),
2096–2030.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In NIPS 2014. Curran Associates, Inc., 2672–2680. http://papers.nips.cc/
paper/5423-generative-adversarial-nets.pdf

[5] Jiafeng Guo, Yixing Fan, Qingyao Ai, andW. Bruce Croft. 2016. A Deep Relevance
Matching Model for Ad-hoc Retrieval. In CIKM ’16. ACM, New York, NY, USA,
55–64. https://doi.org/10.1145/2983323.2983769

[6] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei A. Efros, and Trevor Darrell. 2017. CyCADA: Cycle-Consistent Adversarial
Domain Adaptation. CoRR abs/1711.03213 (2017).

[7] Mostafa Keikha, Jae Hyun Park, W. Bruce Croft, and Mark Sanderson. 2014.
Retrieving Passages and Finding Answers. In ADCS ’14. ACM, New York, NY,
USA, Article 81, 4 pages. https://doi.org/10.1145/2682862.2682877

[8] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations
and Trends® in IR 3, 3 (2009), 225–331.

[9] Bhaskar Mitra and Nick Craswell. 2018. An introduction to neural information
retrieval. Foundations and Trends® in IR (to appear) (2018).

[10] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to match
using local and distributed representations of text for web search. InWWW 17.
1291–1299.

[11] Federico Nanni, Bhaskar Mitra, Matt Magnusson, and Laura Dietz. 2017. Bench-
mark for complex answer retrieval. In Proc. ICTIR. ACM, 293–296.

[12] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in IR 3, 4 (2009), 333–
389.

[13] Artem Rozantsev, Mathieu Salzmann, and Pascal Fua. 2016. Beyond Sharing
Weights for Deep Domain Adaptation. CoRR abs/1603.06432 (2016).

[14] Aliaksei Severyn and Alessandro Moschitti. 2015. Learning to Rank Short Text
Pairs with Convolutional Deep Neural Networks. In SIGIR (SIGIR ’15). ACM, New
York, NY, USA, 373–382. https://doi.org/10.1145/2766462.2767738

[15] Mihai Surdeanu, Massimiliano Ciaramita, and Hugo Zaragoza. 2008. Learning to
rank answers on large online QA collections. In ACL:HLT. 719–727.

[16] Ming Tan, Bing Xiang, and Bowen Zhou. 2015. LSTM-based Deep Learning
Models for non-factoid answer selection. CoRR abs/1511.04108 (2015). http:
//arxiv.org/abs/1511.04108

[17] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. 2017. Adversarial
discriminative domain adaptation. In CVPR 17, Vol. 1. 4.

[18] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. 2014.
Deep domain confusion: Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474 (2014).

[19] Ellen M Voorhees, Donna K Harman, et al. 2005. TREC: Experiment and evaluation
in information retrieval. Vol. 1. MIT press Cambridge.

[20] Hamed Zamani, Bhaskar Mitra, Xia Song, Nick Craswell, and Saurabh Tiwary.
2018. Neural ranking models with multiple document fields. In Proc. WSDM.
ACM, 700–708.

Short Research Papers I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

1028

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1145/2983323.2983769
https://doi.org/10.1145/2682862.2682877
https://doi.org/10.1145/2766462.2767738
http://arxiv.org/abs/1511.04108
http://arxiv.org/abs/1511.04108

	Abstract
	1 Introduction
	2 Related Work
	3 Cross domain regularization using adversarial learning
	4 Experiments
	4.1 Data
	4.2 Training
	4.3 Evaluation

	5 Results and Discussion
	6 Conclusion and Future Work
	7 Acknowledgements
	References



