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ABSTRACT
In web search, typically a candidate generation step selects a small
set of documents—from collections containing as many as billions
of web pages—that are subsequently ranked and pruned before be-
ing presented to the user. In Bing, the candidate generation involves
scanning the index using statically designed match plans that pre-
scribe sequences of different match criteria and stopping conditions.
In this work, we pose match planning as a reinforcement learning
task and observe up to 20% reduction in index blocks accessed, with
small or no degradation in the quality of the candidate sets.
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1 INTRODUCTION
In response to short text queries, search engines attempt to retrieve
the top few relevant results by searching through collections con-
taining billions of documents [21], often under a second [19]. To
achieve such short response times, these systems typically distrib-
ute the collection over multiple machines that can be searched in
parallel [4]. Specialized data structures—such as inverted indexes
[26, 29]—are used to identify an initial set of candidates that are
progressively pruned and ranked by a cascade of retrieval models
of increasing complexity [11, 23]. The index organization and query
evaluation strategies, in particular, trade-off retrieval effectiveness
and efficiency during the candidate generation stage. However,
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unlike in late stage re-ranking where machine learning (ML) mod-
els are commonplace [8, 15], the candidate generation frequently
employs traditional retrieval models with few learnable parameters.

In Bing, the document representation consists of descriptions
from multiple sources—popularly referred to as fields [17, 28]. Bing
maintains an inverted index per field, and the posting list corre-
sponding to each term may be further ordered based on document-
level measures [9], such as static rank [16]. During query evaluation,
the query is classified into one of few pre-defined categories, and
consequently a match plan is selected. Documents are scanned
based on the chosen match plan which consists of a sequence of
match rules, and corresponding stopping criteria. A match rule de-
fines the condition that a document should satisfy to be selected
as a candidate for ranking, and the stopping criteria decides when
the index scan using a particular match rule should terminate—and
if the matching process should continue with the next match rule,
or conclude, or reset to the beginning of the index. These match
plans influence the trade-off between how quickly Bing responds
to a query, and its result quality. E.g., long queries with rare intents
may require more expensive match plans that consider the body
text of the documents, and search deeper into the index to find
more candidates. In contrast, for a popular navigational query a
shallow scan against a subset of the document fields—e.g., URL and
title—may be sufficient. Prior to this work, these match plans were
hand-crafted and statically assigned to each query category in Bing.

We castmatch planning as a reinforcement learning (RL) task.We
learn a policy that sequentially decides whichmatch rules to employ
during candidate generation. The model is trained to maximize a
cumulative reward computed based on the estimated relevance of
the additional documents discovered, discounted by their cost of
retrieval. We use table-based Q-learning and observe significant
reduction in the number of index blocks accessed—with small or
no degradations in the candidate set quality.

2 RELATEDWORK
Response time is a key consideration in web search. Even a 100ms
latency has been shown to invoke negative user reactions [2, 18].
A large body of work in information retrieval (IR) has, therefore,
focused on efficient query evaluations—e.g., [1, 6, 7]. In the context
of machine learning based approaches to retrieval, models have
been proposed that incorporate efficiency considerations in feature
selection [22, 24], early termination [3], and joint optimization [23].
Predicting query response times has been explored for intelligent
scheduling [10], as well as models for aggressive pruning [5, 20,
27]. Finally, reinforcement learning has been applied in general to
information retrieval [14] and extraction [13] tasks. However, we
believe this is the first work that employs reinforcement learning for
jointly optimizing efficiency and performance of query evaluation.
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3 PRELIMINARIES
Web scale retrieval at Bing. We focus on the problem of efficient

candidate generation for web search. We perform our experiments
on top of the production system deployed at Bing. We briefly de-
scribe this baseline system in this section. To avoid disclosing any
proprietary details about the design of Bing search we only include
the information relevant to our evaluation setup.

Bing employs a telescoping framework [11] to iteratively prune
the set of candidate documents considered for a query. On receiving
a search request, the backend classifies the query based on a set of
available features—the historical popularity of the query, the num-
ber of query terms, and the document frequency of the query terms—
into one of the few pre-determined categories. Based on the query
category, a match plan—comprising of a sequence of match rules
{mr0 . . .mrl }—is selected that determines how the index should be
scanned. Each match rule specifies a criteria that is used to decide
whether a document should be included as a candidate. A query
may have multiple terms and a document may be represented in
the index by multiple fields. A typical match rule comprises of a
conjunction of the query terms that should be matched, and for
each query term a disjunction of the document fields that should be
reviewed. For example, for the query “halloween costumes” a match
rulemrA → (halloween ∈ A|U |B |T ) ∧ (costumes ∈ A|U |B |T ) may
specify that each term must have a match in at least one of the
four document fields—anchor text (A), URL (U), body (B), or title
(T). For the query “facebook login”, in contrast, a different match
rulemrB → (facebook ∈ U |T )—that only considers the URL and
the title fields, and relaxes the matching constraint for the term
“login”—may be more appropriate. WhilemrA may uncover more
candidates by matching against additional fields,mrB is likely to be
faster because it spends less time analyzing each document. If we
assume that the index is sorted by static rank, thenmrB is still likely
to locate the right document satisfying the navigational intent.

In Bing, the index data is read from disk to memory in fixed
sized contiguous blocks. As the match plan is executed, two accu-
mulators keep track of the number of blocks accessed u from disk
and the cumulative number of term matches v in all the inspected
documents so far. The match plan uses these counters to define the
stopping condition for each of the match rules. When either of the
counters meet the specified threshold, the match rule execution
terminates. Then, the match plan may specify that the scanning
should continue with the next match rule, or the search should
terminate. The match plan may also choose to reset the scan to the
beginning of the index before continuing with the next match rule.

After the match plan execution terminates, the selected can-
didates are further ranked and pruned by a cascade of machine
learning models. Figure 1 visualizes this telescoping setup. The
matching stage—referred to as level 0, or L0—is followed by a num-
ber of rank-and-prune steps (e.g., L1 and L2). This telescoping setup
typically runs on each individual machine that has a portion of
the document index, and the results are aggregated across all the
machines, followed by more rank-and-prune stages. A significant
amount of literature exists on machine learning approaches to
ranking [8, 12]. In this work, we instead study the application of
reinforcement learning to the matching stage.

Desiderata of candidate generation. The candidate generation has
a strong influence on both the quality of Bing’s results, as well as its
response time. If the match plan fails to recall relevant candidates,
the ranking stages that follow have no means to compensate for the
missing documents. Therefore, thematch plan has to draw a balance
between the cost and the value of performing more sophisticated
query-document analysis (e.g., considering additional document
fields). Constructing a match plan that performs reliably on a large
number of distinctly different queries classified under the same
category is a difficult task. A reasonable alternative may be to learn
a policy that adapts the matching strategy at run-time based on the
current state of the candidate generation process. Therefore, we
learn a policy that sequentially selects matching rules based on the
current state—or decides to terminate or reset the scan. Notably, in
reinforcement learning this approach is similar to an agent choosing
between k available actions based on its present state.

In the telescoping setup, it is important for the matching func-
tion to select documents that are likely to be ranked highly by
the subsequent models in the pipeline. This means given a choice
between two documents with equal number of query term matches,
the match plan should surface the document that the rankers in
stage L1, and above, prefer. In Section 4, we will describe our reward
function which uses the L1 scores as an approximation of the docu-
ment’s relevance. This implicitly optimizes for a higher agreement
between our matching policy and upstream ranking functions.

Finally, it is desirable that our matching strategy is customized
for each query category. For example, the optimal matching policy
for long queries containing rare terms is unlikely to be the best
strategy for short navigational queries. We, therefore, train separate
policies for each query category.

4 REINFORCEMENT LEARNING FOR
DYNAMIC MATCH PLANNING

In reinforcement learning, an agent selects an action a ∈ A based
on the current state s ∈ S. In response, the environment E provides
an immediate reward r (s,a) and a new state s ′ to the agent. The
transition to s ′ is usually stochastic, and the goal of the agent is to
maximize the expected cumulative long-term reward R, which is
the time-discounted sum of immediate rewards.

R =
T∑
t=0

γ t r (st ,at ) , 0 < γ ≤ 1 (1)

where, γ is the discount rate. The goal of the agent is to learn a
policy πθ : S → A which maximizes the cumulative discounted
reward R. In our setup, the action space includes the choice of (i) the
k different match rules, (ii) resetting the scan to the beginning of
the index, or (iii) terminating the candidate generation process.

A = {mr1, . . . ,mrk } ∪ {areset,astop} (2)
Our state st ∈ S is a function of the cumulative index blocks

accessed ut and the cumulative number of term matches vt at time
t . We implement table based Q-learning [25] which requires that
the state space to be discrete. So, we run the baseline match plans
from Bing’s production system and collect a large set of {ut ,vt }
pairs recording after every match rule execution. We assign these
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Figure 1: A telescoping architecture employed in Bing’s retrieval system. Documents are scanned using a pre-defined match
plan. Matched documents are passed through additional rank-and-prune stages.

points to p bins, such that each bin has roughly the same number
of points. These p bins serves as our discrete state space.

During training, we want to reward a policy πθ for choosing an
action a at state st that maximizes the total estimated relevance of
the documents recalled, while minimizing the index blocks accessed.
So, our reward function has the following form:

ragent(st ,at ) =
∑mt+1
i д(di )

mt+1 · ut+1
, mt+1 = min(vt+1,n) (3)

д(di ) is the relevance of the ith document which we estimate
based on the L1 ranker score from the subsequent level of our
telescoping setup. The constant n determines the number of top
ranked documents we consider in the reward computation, where
the ranking is determined by the L1 model. The ut+1 component
in the denominator penalizes the model for additional documents
inspected. The final reward is computed as the difference between
the agent’s reward and the reward achieved by executing the pro-
duction baseline match plan:

r (s,a) = ragent(s,a) − rproduction(s,a) (4)
If no new documents are selected, we assign a small negative

reward. At test time, we greedily select the action with the highest
predicted Q-value. The index scan is terminated when the policy
chooses astop, or we surpass a maximum execution time threshold.

5 DATA AND EXPERIMENTS
To train our model, we sample approximately one million queries
from Bing’s query logs. We train our policies individually for each
query category using the corresponding queries from this sampled
dataset. We set the size of our state space p to 10K, and during

training inspect the top five (n = 5) documents for computing the
reward. For evaluation, we use two query sets—one generated by
uniformly sampling from the set of distinct queries in Bing’s query
log (unweighted set), and the other using a sampling probability that
is proportional to the historical popularity of the query (weighted
set). For each query, we have a number of documents that have been
previously rated using crowd-sourced annotators on a five-point
relevance scale.

Bing’s index is distributed over a large number of machines. We
train our policy using a single machine—containing one shard of
the index—but test against a small cluster of machines containing
approximately 10% of the entire index. During evaluation, the same
policy is applied on every machine which, however, may lead to
executing different sequences of match rules on each of them.

Metrics. We compare the candidate sets generated by the base-
line match plans and our learned policies w.r.t. both relevance and
efficiency. Each candidate setD is unordered because it precedes the
ranking steps. To quantify the relevance of an unordered candidate
set using graded relevance judgments, we use the popular NDCG
metric but without any position based discounting. We compute
the Normalized Cumulative Gain (NCG) for D as follows:

CumGain =
|D |∑
i=1

gaini (5)

NCG =
CumGain

CumGainideal
(6)

We limit |D | to 100, and average the NCG values over all the
queries in the test set. To measure efficiency, we consider the num-
ber of index blocks accessed u during the index scan. In our experi-
ments, any reduction in u show a linear relationship with reduction
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Table 1: Changes in NCG and the index blocks accessed u
from our learned policy relative to production baselines. In
both categories, we observe significant reduction in index
blocks accessed, although at the cost of some loss in rele-
vance in case of CAT1. All the differences in NCG and u are
statistically significant (p < 0.01). Coverage of CAT2 queries
in the unweighted set is too low to report numbers.

Segment size NCG@100 Index block
accessed

CAT1
Weighted set 7.2% -1.8% -17.5%
Unweighted set 3.2% -6.2% -16.3%

CAT2
Weighted set 10.1% +0.2% -22.7%
Unweighted set <1% - -

in the execution time of the candidate generation step. Unfortu-
nately, we can not report these improvements in execution time
due to the confidential nature of such measurements.

6 RESULTS
At the time of writing this paper, we have experimented with two
of the query categories. CAT1 consists of short multi-term queries
with few occurrences over last 6 months. CAT2 includes multi-term
queries, where every term hasmoderately high document frequency.
As the absolute numbers are confidential, we report the relative im-
provements against the Bing production system in Table 1. Notably,
these efficiency improvements—also highlighted in Figure 2—are
over a strong baseline that has been tuned continuously by many
Bing engineers over several years.

7 DISCUSSION AND CONCLUSIONS
Many recent progresses in IR have been fueled by new machine
learning techniques. ML models are typically slower and consume
more resources than traditional IR models, but can achieve better
retrieval effectiveness by learning from large datasets. Better rele-
vance in exchange for few additional milliseconds of latency may
sometimes be a fair trade. But we argue that machine learning can
also be useful for improving the speed of retrieval. Not only do
these translate into material cost savings in query serving infras-
tructure, but milliseconds of saved run-time can be re-purposed by
upstream ranking systems to provide better end-user experience.
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