
Luandri: A Clean Lua Interface to the Indri Search Engine

Bhaskar Mitra∗

Microso�, University College London
Cambridge, UK

bmitra@microso�.com

Fernando Diaz†

Spotify
New York, USA
diazf@acm.org

Nick Craswell
Microso�

Bellevue, USA
nickcr@microso�.com

ABSTRACT
In recent years, the information retrieval (IR) community has wit-
nessed the �rst successful applications of deep neural network
models to short-text matching and ad-hoc retrieval tasks. However,
the two communities—focused on deep neural networks and on IR—
have less in common when it comes to the choice of programming
languages. Indri, an indexing framework popularly used by the
IR community, is wri�en in C++, while Torch, a popular machine
learning library for deep learning, is wri�en in the light-weight
scripting language Lua. To bridge this gap, we introduce Luandri
(pronounced “laundry”), a simple interface for exposing the search
capabilities of Indri to Torch models implemented in Lua.

CCS CONCEPTS
•Information systems →Information retrieval; Web search-
ing and information discovery; •Computing methodologies
→Neural networks;

KEYWORDS
Information retrieval; application programming interface; neural
networks

1 INTRODUCTION
In recent years, deep neural networks (DNNs) have demonstrated
early positive results on a variety of standard information retrieval
(IR) tasks, including on short-text matching [10, 11, 14, 19, 21, 22]
and ad-hoc retrieval [9, 17], and shown promising performances on
other emerging retrieval tasks such as multi-modal retrieval [15]
and conversational IR [28, 30]. �is work occurs at the intersection
of the machine learning and information retrieval communities,
who have di�erent research tools that are implemented in di�erent
programming languages. Popular neural network toolkits are o�en
implemented in (or have bindings for) scripting languages, such as
Python1 (e.g., TensorFlow [1], �eano [2], CNTK [29], Ca�e [13],
MXNet [3], Chainer [25], and PyTorch2) or Lua [12] (e.g., Torch [4])
∗�e author is a part-time PhD student at UCL.
†Work done while at Microso�.
1h�ps://www.python.org/
2h�ps://github.com/pytorch/pytorch

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR’17, August 7–11, 2017, Shinjuku, Tokyo, Japan.
© 2017 ACM. 978-1-4503-5022-8/17/08. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3077136.3080650

because of their rapid prototyping capabilities. In contrast, many
popular indexing frameworks for IR are implemented in C++ (e.g.,
Indri [24]) or Java (e.g., Terrier [18] and Apache Lucene [16]). �e
open-source community has developed Python wrappers over the
Indri [26] and the Apache Lucene [20] programming interfaces to
expose the functionalities of these rich IR libraries to the program-
ming language. However, there is still a gap that remains to be
bridged for non-Python based deep learning toolkits, such as Torch.

Torch3 is a numeric computing framework popular among the
deep neural network community. It has been shown to be signif-
icantly faster compared to other toolkits such as TensorFlow on
convolutional neural networks in multi-GPU environment [23]. It
is implemented using the light-weight scripting language Lua.4
In this paper, we introduce Luandri (pronounced “laundry”) – a
Lua wrapper over the Indri search engine. In particular, Luandri
exposes parts of the Indri query environment application program-
ming interface (API) for document retrieval including support for
the rich Indri query language.

2 MOTIVATION
�ere are a variety of scenarios in which a DNN model can bene�t
from having access to a search engine during training and/or evalu-
ation. Existing DNN models for ad-hoc retrieval [9, 17], for example,
operate on query-document pairs to predict relevance. Running
these models on the full corpus is prohibitively costly – therefore
the evaluation of these models is o�en limited to re-ranking top-
N candidate documents retrieved by a traditional IR model or a
search engine. Typically, these candidate sets are retrieved o�ine
in a process separate from the one in which the DNN is evaluated.
However, if the search engine is accessible in the same language
as the one in which the DNN is implemented, then the candidate
generation step and the DNN-based re-ranking step can follow each
other within the same process – removing the requirement to store
large quantity of intermediate datasets containing the candidates
to be ranked.

DNN models train on labelled data, although in some cases labels
can be inferred rather than explicit. For example, many DNN models
for IR [9–11, 14, 22] use negative training examples that are sampled
uniformly from the corpus. Recently Mitra et al. [17] reported that
training with judged negative documents can yield be�er NDCG
performance than training with uniform random negatives. Having
access to a search engine during training could enable additional
methods for generating negative samples, such as using documents
that are retrieved by the engine but at lower ranks.

3h�ps://github.com/torch/torch7
4h�ps://www.lua.org

Short Resource Papers SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

1221

https://www.python.org/
https://github.com/pytorch/pytorch
https://github.com/torch/torch7
https://www.lua.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3077136.3080650&domain=pdf&date_stamp=2017-08-07

Code snippet 1: Sample Lua code for searching an Indri index using the Luandri API. �e Indri index builder application
is used for generating the index beforehand. �e search query is written using the popular INQUERY structured operators
that are supported natively by Indri for specifying matching constraints. �e run�ery method in the Luandri API accepts
the request as a Lua table and automatically converts it into the appropriate C++ request object that Indri natively expects.
Similarly, the result object returned by Indri in C++ is automatically converted to a Lua table.

1 local luandri = paths.dofile('luandri.lua ')
2 local query_environment = QueryEnvironment ()
3 query_environment:addIndex("path_to_index_file")
4
5 local request = {
6 query = '#syn(#od1(neural networks) #od1(deep learning)) #greater(year 2009) ',
7 resultsRequested = 10
8 }
9 local results = query_environment:runQuery(request).results

10
11 for k, v in pairs(results) do
12 print(v.docid .. '\n' .. v.documentName .. '\n' .. v.snippet .. '\n')
13 end

�e lack of adequate labelled data available for training DNN
models for ad-hoc retrieval has been a focus for the neural IR com-
munity [5]. It is possible that alternate strategies for supervision
may be considered for training these deep models – including rein-
forcement learning [27] and training under adversarial se�ings [8]
– which could also make use of retrieval from a full corpus during
the model training.

Diaz et al. [6] demonstrated a di�erent application of the tradi-
tional retrieval step in the neural IR model. Given a query, they
retrieve a set of documents using Indri and use that to train a brand
new distributed representation of words speci�c to that query at
run time. Such models, with query-speci�c representation learn-
ing, can be implemented and deployed more easily if the machine
learning framework has access to a search engine.

Finally, Ghazvininejad et al. [7] proposed to “lookup” external
repositories of facts as part of solving larger tasks using neural
network models. Empowering DNN models with access to a search
engine may be an exciting area for future exploration.

In all these scenarios, it is useful for a search engine, such as
Indri, to be accessible from the same programming language used to
implement the DNN. �erefore, we are optimistic that by publicly
releasing the Luandri API we will stimulate novel explorations from
IR researchers already familiar with Torch.

3 QUERYING INDRI FROM LUA
Indri is an open-source search engine available with the Lemur
toolkit.5 Indri consists of two primary components – an application
that builds an index from a raw document collection and another
application that can perform searches using this index. �e Indri
index builder can deal with several di�erent document formats for

5h�p://www.lemurproject.org/indri/

indexing. �is includes TREC (text and Web), HTML, XML, PDF,
and plain text among many others.

Searching using Indri involves specifying one or more indices
and querying them by either interactively calling the API or by
running an application in batch-mode. �e Indri query language
supports a rich set of operators for specifying phrasal matching
conditions, synonymy relationships, document �ltering criteria,
and other complex constraints. �e full query language grammar
is available online for reference.6

Invoking a search on an Indri index using the Luandri API is like
how one may use the native C++ Indri API. Code snippet 1 shows a
minimal example of a typical Indri-based search using the Luandri
API. We observe that the search is performed by invoking very few
lines of Lua code.

�e example also demonstrates the use of Indri structured queries.
A search is performed using a structured query that constraints the
matching to either of the two ordered phrases – “neural networks”
or “deep learning”. �e query directs Indri to treat both phrases as
synonyms. In addition, a numeric �lter is speci�ed to limit matches
to only documents whose value corresponding to the year �eld is
greater than 2009.

�is example shows searching on the full document index. How-
ever, Luandri also allows users to specify a list of document iden-
ti�ers in the request object to limit the search to only those set
of documents. A �xed list of stop words can also be speci�ed for
retrieval using the Luandri API.

�e full Luandri implementation is available on GitHub7 under
the MIT license. We direct interested readers to the source code for
exact API speci�cations.

6h�ps://www.lemurproject.org/lemur/Indri�eryLanguage.php
7h�ps://github.com/bmitra-ms�/Luandri

Short Resource Papers SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

1222

http://www.lemurproject.org/indri/
https://www.lemurproject.org/lemur/IndriQueryLanguage.php
https://github.com/bmitra-msft/Luandri

4 UNDER THE HOOD
�e implementation of Lua as a programming language puts a
strong emphasis on extensibility [12]. Lua is an extension language
because any Lua code can be relatively easily embedded as libraries
into code wri�en in other languages. It is also an extensible language
because of its ability to call functions wri�en in other languages,
such as C. �e implementation of the Luandri API bene�ts from
the la�er property of the language.

Lua comes with a fast Just In Time (JIT) compiler called LuaJIT.8
LuaJIT exposes a foreign-function interface9 (FFI) that makes it
easy to call external C functions and manipulate C data structures
from Lua. �e Luandri API is wri�en using the LuaJIT FFI library.

Luandri API wraps Indri’s query environment data types and
methods by extern C functions. �en using the LuaJIT’s FFI library
these C methods are exposed to any code wri�en in Lua. Luandri
automatically handles any conversions necessary between Lua
tables and Indri’s C++ objects, and vice versa. �e “Luandri.cpp”
and “luandri.lua” �les contain all the wrapper logic on the C++ and
the Lua side of our API code, respectively.

�e current Luandri API exposes only some of the data structures
and methods from Indri’s query environment. In future, we hope
to expose more of Indri’s retrieval functionalities prioritizing based
on the need of the broader research community.

5 CONCLUSIONS
We introduced Luandri, a Lua API to the Indri search engine. Lu-
andri brings to DNN models, implemented on Torch, the retrieval
capabilities of Indri, including its powerful query language gram-
mar. We posit that the capabilities of a search engine may be useful
for training future DNN models for IR – for sampling negative ex-
amples, or for training under reinforcement or adversarial se�ings.
We hope that the release of Luandri will not only help researchers
working on Torch models for IR, but also stimulate new research
in novel DNN models that incorporate retrieval from an external
knowledge base as an intermediate step towards solving larger
tasks.

REFERENCES
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Je�rey Dean, Ma�hieu Devin, and
others. 2016. Tensor�ow: Large-scale machine learning on heterogeneous dis-
tributed systems. arXiv preprint arXiv:1603.04467 (2016).

[2] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan
Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua
Bengio. 2010. �eano: A CPU and GPU math compiler in Python. In Proc. 9th
Python in Science Conf. 1–7.

[3] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A �exible and
e�cient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

[4] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. 2011. Torch7: A
matlab-like environment for machine learning. In BigLearn, NIPS Workshop.

[5] Nick Craswell, W Bruce Cro�, Jiafeng Guo, Bhaskar Mitra, and Maarten de Rijke.
2016. Report on the SIGIR 2016 Workshop on Neural Information Retrieval
(Neu-IR). 50, 2 (2016), 96–103.

[6] Fernando Diaz, Bhaskar Mitra, and Nick Craswell. 2016. �ery Expansion with
Locally-Trained Word Embeddings. arXiv preprint arXiv:1605.07891 (2016).

[7] Marjan Ghazvininejad, Chris Brocke�, Ming-Wei Chang, Bill Dolan, Jianfeng
Gao, Wen-tau Yih, and Michel Galley. 2017. A Knowledge-Grounded Neural
Conversation Model. arXiv preprint arXiv:1702.01932 (2017).

8h�p://luajit.org
9h�p://luajit.org/ext �.html

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[9] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Cro�. 2016. A Deep Relevance
Matching Model for Ad-hoc Retrieval. In Proc. CIKM. ACM, 55–64.

[10] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional
neural network architectures for matching natural language sentences. In Proc.
NIPS. 2042–2050.

[11] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proc. CIKM. ACM, 2333–2338.

[12] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar Celes Filho.
1996. Lua-an extensible extension language. So�w., Pract. Exper. 26, 6 (1996),
635–652.

[13] Yangqing Jia, Evan Shelhamer, Je� Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Ca�e: Convolu-
tional architecture for fast feature embedding. In Proceedings of the 22nd ACM
international conference on Multimedia. ACM, 675–678.

[14] Zhengdong Lu and Hang Li. 2013. A deep architecture for matching short texts.
In Advances in Neural Information Processing Systems. 1367–1375.

[15] Lin Ma, Zhengdong Lu, Lifeng Shang, and Hang Li. 2015. Multimodal convolu-
tional neural networks for matching image and sentence. In Proceedings of the
IEEE International Conference on Computer Vision. 2623–2631.

[16] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. 2010. Lucene in Action:
Covers Apache Lucene 3.0. Manning Publications Co.

[17] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to Match
Using Local and Distributed Representations of Text for Web Search. In Proc.
WWW. 1291–1299.

[18] Iadh Ounis, Gianni Amati, Vassilis Plachouras, Ben He, Craig Macdonald, and
Christina Lioma. 2006. Terrier: A high performance and scalable information
retrieval platform. In Proceedings of the OSIR Workshop. 18–25.

[19] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.
2016. Text Matching as Image Recognition. In Proc. AAAI.

[20] Andreas Schreiber. 2009. Mixing Python and Java. (2009).
[21] Aliaksei Severyn and Alessandro Moschi�i. 2015. Learning to rank short text

pairs with convolutional deep neural networks. In Proc. SIGIR. ACM, 373–382.
[22] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Gregoire Mesnil. 2014.

A latent semantic model with convolutional-pooling structure for information
retrieval. In Proc. CIKM. ACM, 101–110.

[23] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. 2016. Benchmarking
State-of-the-Art Deep Learning So�ware Tools. arXiv preprint arXiv:1608.07249
(2016).

[24] Trevor Strohman, Donald Metzler, Howard Turtle, and W Bruce Cro�. 2005.
Indri: A language model-based search engine for complex queries. In Proceedings
of the International Conference on Intelligent Analysis, Vol. 2. Citeseer, 2–6.

[25] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. 2015. Chainer: a
next-generation open source framework for deep learning. In Proceedings of
workshop on machine learning systems (LearningSys) in the twenty-ninth annual
conference on neural information processing systems (NIPS).

[26] Christophe Van Gysel, Evangelos Kanoulas, and Maarten de Rijke. 2017. Pyndri:
a Python Interface to the Indri Search Engine. arXiv preprint arXiv:1701.00749
(2017).

[27] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229–256.

[28] Rui Yan, Yiping Song, and Hua Wu. 2016. Learning to respond with deep
neural networks for retrieval-based human-computer conversation system. In
Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval. ACM, 55–64.

[29] Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Zhiheng Huang, Brian
Guenter, Oleksii Kuchaiev, Yu Zhang, Frank Seide, Huaming Wang, and oth-
ers. 2014. An introduction to computational networks and the computational
network toolkit. Technical Report. Tech. Rep. MSR, Microso� Research, 2014,
h�p://codebox/cntk.

[30] Xiangyang Zhou, Daxiang Dong, Hua Wu, Shiqi Zhao, R Yan, D Yu, Xuan Liu, and
H Tian. 2016. Multi-view response selection for human-computer conversation.
EMNLP�16 (2016).

Short Resource Papers SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

1223

http://luajit.org
http://luajit.org/ext_ffi.html

	Abstract
	1 Introduction
	2 Motivation
	3 Querying Indri from Lua
	4 Under the hood
	5 Conclusions
	References

