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1. MOTIVATIONS
The traditional approach in information retrieval (IR) for estimat-

ing relevance of a document to a query is to count the repetitions
of the query terms in the contents of the document. The content
typically includes the document’s body text and the title, but may
also include anchor texts linking to the document, and search queries
for which the document was previously viewed. In contrast to term
based IR, latent semantic models [3, 5, 15] proposed to learn dense
vector representations of words and match the document to the query
in low-dimensional embedding space. This makes sense, because as
noted by Robertson [31], every term in the document contain some
information about the document’s relevance, irrespective of whether
or not the term itself appears in the query.

Over last few years, neural representation learning for text has
demonstrated significant improvements in many natural language
processing tasks like language modelling [18] and machine transla-
tion [2]. While successes from traditional representation learning
approaches in IR have been somewhat limited [1], recently there
has been a renewed interest in the applications of neural embedding
models for retrieval tasks. Much of the recent breakthroughs focus
on applications of word embeddings [6, 9, 11, 28], and learning
vector representations for short text similarity [17, 35]. Other works
have explored using vector representations for document ranking
[27], assisting users to formulate rare queries [26], and contextual
entity search [10]. Recent tutorials [23] and workshops [4] have
explored some aspects of deep learning in the context of IR tasks.
This tutorial will focus on the fundamentals of neural representation
learning for IR and try to reconcile these new neural embedding
models with early representation learning approaches in IR.

2. TOPICS
A tentative schedule and outline of topics is presented below:

09.00–10.30 Early morning session

• Brief history of embeddings in IR: Salton’s classic vector
space model [34]; latent semantic models [3, 5, 15]; limita-
tions of embeddings models in IR [1, 40]

• Neural word embeddings: Word2vec [24]; explicit vector
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space representations [22]; GloVe [30]; density-based repre-
sentations [38]

• Understanding relationships in embedding spaces: different
tasks, different embeddings [14, 29, 37]

• Word embeddings for IR: query-document matching [9, 28];
query re-writing [6, 11, 32]; term re-weighting [42]

10:30–11:00 Coffee break

11:00–12:00 Late morning session

• Short and long text embeddings: semantic hashing [33];
Paragraph2vec [21]; DSSM [17, 36]; short text similarity
[16, 19, 20, 35]; document ranking [27]

• Other applications in retrieval: query auto-completion [26];
session modelling [25]; user modelling [7]; cross-lingual
retrieval [12, 39]; multimedia embeddings [8, 13]

• Tools: CNTK demo [41]

12:00–14:00 Lunch

All materials (including slides presented) will be made available
online (http://bit.ly/NeuIRTutorial-WSDM2017) for download. No
additional resources or equipments will be necessary.
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