
Query Auto-Completion for Rare Prefixes

Bhaskar Mitra
Microsoft

bmitra@microsoft.com

Nick Craswell
Microsoft

nickcr@microsoft.com

ABSTRACT
Query auto-completion (QAC) systems typically suggest queries that
have previously been observed in search logs. Given a partial user
query, the system looks up this query prefix against a precomputed
set of candidates, then orders them using ranking signals such as
popularity. Such systems can only recommend queries for prefixes
that have been previously seen by the search engine with adequate
frequency. They fail to recommend if the prefix is sufficiently rare
such that it has no matches in the precomputed candidate set.

We propose a design of a QAC system that can suggest comple-
tions for rare query prefixes. In particular, we describe a candidate
generation approach using frequently observed query suffixes mined
from historical search logs. We then describe a supervised model
for ranking these synthetic suggestions alongside the traditional
full-query candidates. We further explore ranking signals that are
appropriate for both types of candidates based on n-gram statis-
tics and a convolutional latent semantic model (CLSM). Within
our supervised framework the new features demonstrate significant
improvements in performance over the popularity-based baseline.
The synthetic query suggestions complement the existing popularity-
based approach, helping users formulate rare queries.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Information Search
and Retrieval

Keywords: Query auto-completion; Deep learning

1. INTRODUCTION
As users enter their query into the search box, most modern

search engines provide a ranked list of query suggestions based on
the current prefix already typed by the user. In a typical approach
used by many query auto-completion (QAC) systems, candidate
queries are identified by doing an exact prefix lookup against a fixed
set of popular queries, using a data structure such as a prefix tree [4].
The candidates are then ranked by their expected likelihood, which
is typically computed as a function of its past popularity (commonly
referred to as the MostPopularCompletion (MPC) model [1]). Such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
CIKM’15, October 19–23, 2015, Melbourne, Australia.
c© 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.

DOI: http://dx.doi.org//10.1145/2806416.2806599.

Table 1: Synthetic QAC candidates generated by the suffix-
based approach and ranked using only the CLSM similarity
feature. The CLSM model projects both the prefix and the
suffix to a common 128-dimensional space allowing us to rank
according to prefix-suffix cosine similarity. One of the lower
quality synthetic candidates "cheapest flights from seattle to
airport" is ranked seventh in the second list.

what to cook with chicken and broccoli and
what to cook with chicken and broccoli and bacon
what to cook with chicken and broccoli and noodles
what to cook with chicken and broccoli and brown sugar
what to cook with chicken and broccoli and garlic
what to cook with chicken and broccoli and orange juice
what to cook with chicken and broccoli and beans
what to cook with chicken and broccoli and onions
what to cook with chicken and broccoli and ham soup

cheapest flights from seattle to
cheapest flights from seattle to dc
cheapest flights from seattle to washington dc
cheapest flights from seattle to bermuda
cheapest flights from seattle to bahamas
cheapest flights from seattle to aruba
cheapest flights from seattle to punta cana
cheapest flights from seattle to airport
cheapest flights from seattle to miami

a system can only suggest queries with enough historic popularity
to make it into the prefix tree.

We propose an additional candidate generation strategy for QAC
by mining popular query suffixes. Candidate suffixes are popular
n-grams that appear at the ends of queries. By appending such
n-grams suffixes to a user’s query prefix we can generate synthetic
suggestion candidates that have never been observed in the historical
query logs. Table 1 contains examples of such suggestions. We
further propose a supervised framework for ranking these synthetic
queries alongside the traditional full-query suggestion candidates.
We also explore new ranking signals in this framework, based on
the query n-gram statistics and a deep convolutional latent semantic
model (CLSM)[15].

2. RELATED WORK
Language modelling based approaches for sentence completion

have been studied in the context of e-mail and document authoring[3,
5, 8, 13]. In Web search, White and Marchionini [17] and Fan et al.
[7] proposed models for term recommendations to aid users in their
query formulation process. Bhatia et al. [2] extracted frequently

1755

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2806416.2806599&domain=pdf&date_stamp=2015-10-17

Table 2: Most popular query suffixes extracted from the pub-
licly available AOL logs.

Top suffixes Top 2-word suffixes Top 3-word suffixes

com for sale federal credit union
org yahoo com new york city
net myspace com in new york
gov google com or no deal
pictures new york disney channel com
lyrics real estate my space com
edu of america in new jersey
sale high school homes for sale
games new jersey department of corrections
florida space com chamber of commerce
for sale aol com bath and beyond
us s com in las vegas

occurring phrases from document corpus and used them to generate
suggestion candidates in the absence of a query log. Duan and
Hsu [6] have studied the problem of online spelling correction for
query auto-completion and Hawking and Griffiths [9] have explored
mechanisms for generating query suggestions in the enterprise set-
tings. Our proposed approach generates synthetic query suggestion
candidates by combining the input prefix with popular query suffixes
to augment the regular full-query QAC suggestions.

Within our proposed supervised framework, we explore convo-
lutional latent semantic model (CLSM)[10, 15] as a ranking signal.
Mitra [11] previously used the CLSM for modelling session context
for QAC ranking. Unlike Mitra [11], our focus is on ranking query
suffixes and we propose a novel approach for training a CLSM on
prefix-suffix pairs for this task.

3. RARE PREFIX AUTO-COMPLETION
We propose two key ideas in this paper. Firstly, we generate

synthetic query suggestion candidates for QAC using popular query
suffixes. We then introduce n-gram and CLSM based features in
a supervised learning setting to rank these synthetic suggestions
alongside the full-query suggestion candidates.

3.1 Candidate Generation
From every query in the search engine logs we generate all possi-

ble n-grams from the end of the query. For example, from the query
"bank of america" we generate the suffixes "america", "of america"
and "bank of america". By aggregating across all queries we iden-
tify the most popular suffixes. Table 2 shows the most frequently
observed query suffixes in the publicly available AOL logs [14].

Next, for a given prefix we extract the end-term as shown in
Figure 1. We match all the suffixes that start with the end-term from
our precomputed set. These selected suffixes are appended to the
prefix to generate synthetic suggestion candidates. For example, the
prefix "cheap flights fro" is matched with the suffix "from seattle" to
generate the candidate "cheap flights from seattle". Note that many
of these synthetic suggestion candidates are likely to not have been
observed by the search engine before.

We merge these synthetic suggestions with the set of candidates
selected from the list of historically popular queries. This combined
set of candidates is used for ranking as we will describe in Sec 4.

3.2 Ranking Features
For every prefix and suggestion candidate (synthetic or previously

observed), we compute a set of common features for the supervised
ranking model. We describe these features in this section, focusing
on the n-gram and CLSM features that we propose for this setting.

cheapest flight fro End-term: “fro”

cheapest flight from End-term: “from”

cheapest flight from End-term: “from ”

cheapest flight from n End-term: “n”

Figure 1: Examples of fully or partially typed end-terms ex-
tracted from the input prefixes. The end-term is used for select-
ing the set of candidate suffixes for the generation of synthetic
query suggestions.

N-gram based features. From the set of all n-grams G in a
candidate suggestion we compute the n-gram frequency features
ngramfreqi (for i = 1 to 6).

ngramfreqi =
∑

g∈G,len(g)=i

freq(g) (1)

Where len(g) and freq(g) are the number of words in the n-
gram g and its observed frequency in the historical query logs,
respectively. Intuitively, these n-gram features model the likelihood
that the candidate suggestion is generated by the same language
model as the queries in the search logs.

CLSM based features. For document retrieval, Shen et al. [15]
demonstrated that discriminatively training a deep neural network
model with a convolutional-pooling structure on clickthrough data
can be effective for modelling query-document relevance. We adopt
the CLSM by training on a prefix-suffix pairs dataset (instead of
query-document titles). The training data for the CLSM is generated
by sampling queries from the search logs and splitting each query
at every possible word boundary. For example, from the query
"breaking bad cast" we generate the two pairs ("breaking", "bad
cast") and ("breaking bad", "cast"). The architecture shown in Figure
2 is used on both the prefix and the suffix side of the CLSM model.

Now given a prefix P and a suggestion candidate C, we extract a
normalized prefix p̄ by removing the end-term from the prefix. Then
a normalized suffix s̄ is extracted by removing p̄ from the query C.
Then we use the trained CLSM model to project the normalized
prefix and the normalized suffix to a common 128-dimensional
space and compute a clsmsim feature.

clsmsim(p̄, s̄) = cosine(y1, y2) =
yᵀ
1y2

‖y1‖‖y2‖
(2)

where y1 and y2 are the CLSM vector outputs corresponding to p̄
and s̄, respectively. Table 1 shows examples of synthetic suggestion
candidates ranked by this clsmsim feature alone.

Other features. Other features used in our model includes the
frequency of the candidate query in the historical logs, length based
features (length of the prefix, the suffix and the full suggestion in
both characters and words) and a boolean feature that indicates
whether the prefix ends with a space character.

4. EXPERIMENTS
Our experiment setup is based on the learning to rank framework

proposed by Shokouhi [16]. We generate all possible prefixes1 from
each query impression to use for training, validation and testing. For
each prefix we identify the set of candidate suggestions as described

1Mitra et al. [12] showed that users use QAC more at word bound-
aries but for simplicity we sample the prefixes with equal probability.

1756

W1 W2 W3 W4 Wn-2

50K 50K 50K 50K 50K

Wn-1 Wn

50K 50K

300 300 300

max max max

300

128

…

…

…

Term vector

Letter tri-gram layer

Convolutional matrix

Convolutional layer

Max pooling operation

Max pooling layer

Output layer

…

Figure 2: The CLSM model architecture. The model has a
convolutional-pooling structure and a 128-dimensional output.

in Section 3.1. We associate a positive relevance judgment with the
candidate that matches the original query from which the prefix was
extracted. Unlike Mitra [11], to accurately measure the coverage
impact of our approach we retain all prefix impressions where the
submitted query is not in the list of candidates available for ranking.

We train LambdaMART [18] models for ranking the suggestions
using features described in Section 3.2. We limit our ranking task
to instances where the prefix contains at least one complete word,
since completions with very short prefixes is already well solved by
our popularity-based features and we are focusing on rare prefixes.
We always train 300 trees (with early stopping using a validation
set) and evaluate the model performances on the test set using the
mean reciprocal rank (MRR) metric.

We conduct all our experiments on the publicly available AOL
query logs [14] and reproduce the same results on the large-scale
query logs of the Bing search engine. We refer to these two datasets
hereafter as the AOL testbed and the Bing testbed, respectively.

The query impressions on both the testbeds are divided into four
temporally separate partitions (background, training, validation and
test). On the AOL testbed we use all the data from 1 March, 2006
to 30 April, 2006 as the background data. We sample queries from
the next two weeks for training, and from each of the following two
weeks for validation and test, respectively. On the Bing testbed we
sample data from the logs from April, 2015 and use the first week
of data for background, the second week for training, the third for
validation and the fourth for testing. We normalize all the queries in
each of these datasets by removing any punctuation characters and
converting them to lower case.

For candidate generation, both the list of popular queries and
suffixes are mined from the background portion of the two testbeds.
We use 724,340 and 1,040,674 distinct queries on the AOL testbed
and the Bing testbed, respectively, as the set of full-query candi-
dates. We evaluate our approach using 10K and 100K most frequent
suffixes. We limit the number of full-query candidates per prefix to
ten and compute the final reciprocal rank by considering only the
top eight ranked suggestions per model. Finally, the CLSM models
are trained using 44,558,631 and 212,854,198 prefix-suffix pairs on
the AOL and the Bing testbeds, respectively.

5. RESULTS
Table 3 summarizes the experiment results and clearly demon-

strates the improvements from the synthetic suggestion over the
MPC model. All the LambdaMART models with different fea-
ture sets when combined with the suffix-based candidates show an
improved MRR over the popularity based baseline. The models
however perform no better, and in most cases worse, compared to

MPC

LambdaMART

O
ve

ra
ll

Fre
qu

en
t

R
ar

e

U
ns

ee
n

0.14

0.25

0.28 0.29 0.29

0.33

0.00

0.18

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

M
R

R

Figure 3: MRR improvements by historical popularity of the
input prefix on the AOL testbed. The LambdaMART model
uses n-gram and CLSM features and includes suffix-based sug-
gestion candidates. Any prefix in the top 100K most popular
prefixes from the background data is considered as Frequent.
There are 7622, 6917 and 14,135 prefix impressions in the Fre-
quent, Rare and Unseen segments, respectively. All reported
differences in MRR with the MPC model are statistically signif-
icant by the t-test (p < 0.01).

the MPC baseline when only the full-query based candidates are
considered. This is expected as the models are trained with the
suffix-based candidates in the training data.

Figure 3 analyses the improvements by segmenting the prefixes
based on their historical popularity. The improvements from the
suffix-based candidates are expectedly higher for the rarer prefixes.
Interestingly, the absolute MRR values for both models are higher
for rare prefixes than for the frequent ones. One factor in this is that
rare prefixes tend to be longer and therefore more specific, giving
fewer candidates to rank and making it easier to achieve good MRR.

The models with the clsmsim feature perform better than the
corresponding models without the feature across all experiments.
However, in general the n-gram features seems to be showing higher
improvements compared to the CLSM based feature. We hypothe-
size that the CLSM feature is less precise than the n-gram features.
For example, we can see in Table 1 that the CLSM based feature
ranks a suffix highly that generates a semantically meaningless query
suggestion "cheapest flight from seattle to airport". While "airport"
is a location that you can take a flight to, in the context of the given
prefix it is clearly an inappropriate suggestion. It is possible that
the prefix-suffix pairs based training of the CLSM can be further
improved. We believe that this is an important area for future inves-
tigations given that the CLSM holds certain other advantages over
n-gram models. For example, the CLSM has limited storage re-
quirements2, and because of the word hashing technique the CLSM
may be more robust to morphological variations and spelling errors
in the input prefix compared to the n-gram based models.

6. CONCLUSION
We proposed a novel candidate generation technique for query

auto-completion by mining and ranking popular query suffixes. Our
empirical study shows that this is an effective strategy for signifi-
cantly improving MRR for rare and unseen prefixes. The supervised
2The CLSM model itself needs to be stored in memory but has no
data storage requirements, unlike the n-gram models.

1757

Table 3: Comparison of all models on the AOL and the Bing testbeds. Due to the proprietary nature of the Bing dataset, we only
report MRR improvements relative to the MPC model for this testbed. Statistically significant differences by the t-test (p < 0.01)
are marked with "*". Top three highest MRR values per testbed are bolded.

AOL Bing
Models MRR % Improv. % Improv.

Full-query based candidates only
MostPopularCompletion 0.1446 - -
LambdaMART Model (n-gram features = no, CLSM feature = no) 0.1445 -0.1 -1.7*
LambdaMART Model (n-gram features = yes, CLSM feature = no) 0.1427 -1.4* -1.2*
LambdaMART Model (n-gram features = no, CLSM feature = yes) 0.1445 -0.1 -1.2*
LambdaMART Model (n-gram features = yes, CLSM feature = yes) 0.1432 -1.0* -1.5*

Full-query based candidates + Suffix based candidates (Top 10K suffixes)
MostPopularCompletion 0.1446 - -
LambdaMART Model (n-gram features = no, CLSM feature = no) 0.2116 +46.3* +32.8*
LambdaMART Model (n-gram features = yes, CLSM feature = no) 0.2326 +60.8* +42.6*
LambdaMART Model (n-gram features = no, CLSM feature = yes) 0.2249 +55.5* +40.1*
LambdaMART Model (n-gram features = yes, CLSM feature = yes) 0.2339 +61.7* +43.8*

Full-query based candidates + Suffix based candidates (Top 100K suffixes)
MostPopularCompletion 0.1446 - -
LambdaMART Model (n-gram features = no, CLSM feature = no) 0.2105 +45.5* +39.9*
LambdaMART Model (n-gram features = yes, CLSM feature = no) 0.2441 +68.7* +54.2*
LambdaMART Model (n-gram features = no, CLSM feature = yes) 0.2248 +55.4* +48.9*
LambdaMART Model (n-gram features = yes, CLSM feature = yes) 0.2453 +69.6* +55.3*

ranking framework proposed in this paper is generic and can be em-
ployed in any QAC system that combines multiple sources of candi-
dates. We described features based on n-gram language models and
convolutional neural networks with demonstrable improvements.

While we have shown significant improvements in MRR using
synthetic candidate generation, we have not measured how often this
approach generates semantically meaningless synthetic suggestions
and have not quantified the effect of showing synthetic suggestions
to search users. A user study on this aspect is left as future work.
There is also further scope for exploring other language models
(such as recurrent neural networks) in the context of this task.

Acknowledgements. The authors are grateful to Piotr Mirowski
and Milad Shokouhi for the valuable discussions and their insightful
feedback during the early stages of this work.

References
[1] Z. Bar-Yossef and N. Kraus. Context-sensitive query

auto-completion. In Proc. WWW, pages 107–116, 2011.

[2] S. Bhatia, D. Majumdar, and P. Mitra. Query suggestions in
the absence of query logs. In Proc. SIGIR, pages 795–804,
2011.

[3] S. Bickel, P. Haider, and T. Scheffer. Learning to complete
sentences. In Proc. ECML, pages 497–504. Springer, 2005.

[4] S. Chaudhuri and R. Kaushik. Extending autocompletion to
tolerate errors. In Proc. SIGMOD, pages 707–718, 2009.

[5] J. J. Darragh, I. H. Witten, and M. L. James. The reactive
keyboard: A predictive typing aid. Computer, 23:41–49,
November 1990.

[6] H. Duan and B.-J. P. Hsu. Online spelling correction for query
completion. In WWW ’11, pages 117–126, 2011.

[7] J. Fan, H. Wu, G. Li, and L. Zhou. Suggesting topic-based
query terms as you type. In Proc. APWEB, pages 61–67,
2010.

[8] K. Grabski and T. Scheffer. Sentence completion. In Proc.
SIGIR, pages 433–439, 2004.

[9] D. Hawking and K. Griffiths. An enterprise search paradigm
based on extended query auto-completion. do we still need
search and navigation? In Proc. ADCS, pages 18–25, 2013.

[10] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck.
Learning deep structured semantic models for web search
using clickthrough data. In Proc. CIKM, pages 2333–2338.
ACM, 2013.

[11] B. Mitra. Exploring session context using distributed
representations of queries and reformulations. In Proc. SIGIR,
To appear, 2015.

[12] B. Mitra, M. Shokouhi, F. Radlinski, and K. Hofmann. On
user interactions with query auto-completion. In Proc. SIGIR,
pages 1055–1058, 2014.

[13] A. Nandi and H. V. Jagadish. Effective phrase prediction. In
Proc. VLDB, pages 219–230, Vienna, Austria, 2007.

[14] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search.
In Proc. InfoScale. ACM, 2006. ISBN 1-59593-428-6.

[15] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. Learning
semantic representations using convolutional neural networks
for web search. In Proc. WWW, pages 373–374, 2014.

[16] M. Shokouhi. Learning to personalize query auto-completion.
In Proc. SIGIR, pages 103–112, 2013.

[17] R. W. White and G. Marchionini. Examining the effectiveness
of real-time query expansion. Inf. Process. Manage., 43:
685–704, May 2007.

[18] Q. Wu, C. Burges, K. Svore, and J. Gao. Adapting boosting
for information retrieval measures. Journal of Information
Retrieval, 13:254–270, 2009.

1758

	1 Introduction
	2 Related Work
	3 Rare Prefix Auto-Completion
	3.1 Candidate Generation
	3.2 Ranking Features

	4 Experiments
	5 Results
	6 Conclusion

